

## 2019 Sol Shnider, M.D. Obstetric Anesthesia Meeting

*The premier review meeting for clinical obstetric anesthesia, established in 1976* 

### March 14-17, 2019 Grand Hyatt Hotel on Union Square San Francisco, California

Jointly provided by the American Society of Anesthesiologists and the Society for Obstetric Anesthesia and Perinatology



American Society of **Anesthesiologists**®



# Welcome to the SOAP 2019 Sol Shnider, M.D. Obstetric Anesthesia Meeting

On behalf of the leadership of the Society for Obstetric Anesthesia and Perinatology (SOAP), I would like to welcome you to the SOAP Sol Shnider 2019 Obstetric Anesthesia Meeting. This outstanding meeting has an extraordinarily rich history and an outstanding track record. The meeting was founded by Drs. Sol Shnider, Sam Hughes and Mark Rosen in 1976, and remains one of the premier refresher course programs for obstetric anesthesia in the world.

The goal for this meeting is to provide practical, high quality educational content for those who practice clinical obstetric anesthesia. We have carefully structured the program based on solicited feedback from practitioners and previous meeting attendees to cover all key aspects in the field of obstetric anesthesia in a clinically-focused program. The meeting presentations will be given by SOAP's best speakers and content experts, as well as accomplished obstetric anesthesiologists in the Bay Area.

I am proud to present what we hope for you will be a highly enriching program, a comprehensive update on current optimal practice, and a meaningful professional experience for all those that attend. I look forward to seeing and interacting with you at the SOAP Sol Shnider 2019 Obstetric Anesthesia Meeting.

Sincerely,

Brendan Carvalho MBBCh, FRCA Chair, Program Committee SOAP Sol Shnider 2019 Meeting

### Table of Contents

- 2 Welcome
- 3 Program Committee
- **3** Program Faculty
- 3 Exhibits Information
- 3 Learning Objectives
- 4 Program Information
- 5 Disclosures
- 5 Pre-Meeting Workshop
- 6-7 Program Schedule
- 8 Thank You Supporters

### <u>Program Slides</u> Friday, March 15, 2019

- 9 Session I: Optimizing Labor Analgesia
- **34** Session II: Comorbidities and High-Risk Patients
- 60 Session III: Enhanced Recovery and Cesarean Anesthesia
- 82 Session IV: Tips and Techniques

### Saturday, March 16, 2019

- **110** Session V: Obstetric Anesthesia Safety Session
- **132** Session VI: New Developments and Concepts
- **160** Session VII: Obstetrical Hemorrhage Update
- 187 Session VIII: Clinical Conundrums in Obstetric Anesthesia

### Sunday, March 17, 2019

- 194 Session IX: Management Updates Safety Session
- 223 Session X: Complications and Uncommon Occurrences

### Program Committee

Brendan Carvalho, M.B., B.Ch., FRCA Program Chair Stanford University School of Medicine

**Pedram Aleshi, M.D.** University of California, San Francisco

Alexander Butwick, M.B., B.S., FRCA, M.S. Stanford University School of Medicine

Jennifer Lucero, M.D., M.S. University of California, San Francisco

Mark Rollins, M.D., Ph.D. University of California, San Francisco



Gillian Abir, M.B, Ch.B., FRCA Stanford University School of Medicine

**Pedram Aleshi, M.D.** University of California, San Francisco

Jessica Ansari, M.D. Stanford University School of Medicine

**Kristine Breyer, M.D.** University of California, San Francisco

**Atisa Britton, M.D.** University of California, San Francisco

Alexander Butwick, M.B., B.S, FRCA, M.S. Stanford University School of Medicine

Brendan Carvalho, M.B., B.Ch., FRCA Stanford University School of Medicine Jeremy Collins, FRCA, M.B., Ch.B. Stanford University School of Medicine

Maurice L. Druzin, M.D. Stanford University School of Medicine

Pamela D. Flood, M.D., M.A. Stanford University School of Medicine

Ashraf S. Habib, M.B.,B. Ch., M.Sc., M.S.N., FRCA Duke University Medical Center

**Eric J. Hunt, M.D., Ph.D.** Permanente Medical Group

Jennifer M. Lucero, M.D., M.S. University of California, San

Francisco

John C. Markley, M.D., Ph.D University of California, San Francisco

Jalal A. Nanji, B.Sc., M.D., FRCPC University of Alberta in Edmonton, Canada Clemens M. Ortner, M.D., M.S., DESA Stanford University School of Medicine

Anil K Panigrahi, M.D., Ph.D. Stanford University School of Medicine

Ronald G. Pearl, M.D., Ph.D. Stanford University School of Medicine

Edward T. Riley, M.D. Stanford University School of Medicine

Mark D. Rollins, M.D., Ph.D. University of Utah

Katherine M. Seligman, M.D. University of New Mexico

**Caitlin D. Sutton, B.S., M.D.** Baylor College of Medicine

Andrea J. Traynor, M.D. Stanford University School of Medicine

Lawrence C. Tsen, M.D. Brigham & Women's Hospital

## **Exhibits Information**

Exhibits will be open during the following times:

Friday, March 15, 2019: 7:00 - 8:00 a.m. 9:45 - 10:30 a.m. 3:15 - 4:00 p.m. Saturday, March 16, 2019: 7:00 - 8:00 a.m. 9:45 - 10:30 a.m. 3:1<mark>5 - 4:</mark>00 p.m.

# Learning Objectives

### At the conclusion of this learning activity, the participant will be able to answer these questions:

- Apply the latest medical, surgical and pharmacological advances in obstetrical hemorrhage management
- Integrate cutting-edge neuraxial techniques including programmed intermittent epidural bolus (PIEB) and dural puncture epidural (DPE) to optimize labor analgesia
- List the recent publications that will most impact your obstetric anesthesia practice
- Construct and implement an enhanced recovery after surgery (ERAS) program for cesarean delivery
- Evaluate point of care ultrasound to enhance your obstetric anesthesia care
- Implement the latest pre-eclampsia management and care bundles
- Identify how to prevent and treat side effects of neuraxial opioids

- Distinguish how to manage pregnant patients with chronic pain and opioid addiction
- Apply best practice for the management of post-dural puncture headaches
- Recognize how to provide optimal anesthesia for non-obstetric surgery during pregnancy and postpartum tubal ligation

**Program Information** 

### Jointly Provided by:





#### **Mission of SOAP**

The mission of this Society is to improve the pregnancy-related outcomes of women and neonates through the support of obstetric anesthesiology research, the provision of education to its members, other providers, and pregnant women, and the promotion of excellence in clinical anesthetic care.

#### **ACCME** Accreditation

This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of the American Society of Anesthesiologists and the Society for Obstetric Anesthesia and Perinatology. The American Society of Anesthesiologists is accredited by the ACCME to provide continuing medical education for physicians.

The American Society of Anesthesiologists designates this live activity for a maximum of 17 AMA PRA Category 1 Credits<sup>™</sup>. Physicians should claim only the credit commensurate with the extent of their participation in the activity.



Maintenance of Certification in Anesthesiology Program® and MOCA® are registered certification marks of The American Board of Anesthesiology®

The Maintenance of Certification in Anesthesiology Program® logo is a trademark of the American Board of Anesthesiology.

This patient safety activity helps fulfill the patient safety CME requirement for Part II of the Maintenance of Certification in Anesthesiology Program (MOCA) of The American Board of Anesthesiology (ABA). Please consult the ABA website, www.theABA.org, for a list of all MOCA requirements.

#### AANA Credits (Program offering Friday through Sunday)

This program has been prior approved by the American Association of Nurse Anesthetists for 17 Class A CE credits: Code Number 1036961: Expiration Date 3/17/2019.

#### Hands-on Ultrasound for the Obstetric Anesthesia Provider: Cardiac Ultrasound, Hemodynamic Exam, Pulmonary Evaluation, Ultrasound Guided TAP **Blocks & Neuraxial Techniques and Basic Fetal** Ultrasound

This program has been prior approved by the American Association of Nurse Anesthetists for 4.00 Class A CE credits; Code Number 1036960; Expiration Date 3/14/2019.

The American Society of Anesthesiologists designates this live activity for a maximum of 4 AMA PRA Category 1 Credits<sup>TM</sup>. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

#### **CEP Number**

Provider approved by the California Board of Registered Nursing, Provider #CEP16975, for 17 Contact Hours.

#### **Target Audience**

This meeting is intended for specialists in anesthesiology to include anesthesiologists, nurse anesthetists, residents and fellows. Pediatricians, neonatologists, perinatologists, obstetricians, general practitioners, delivery room nurses, nurse midwives, and clinical pharmacologists may also find educational benefit. The program is generated from member requests and an assessment of need by the program committee. Attendance at this meeting does not guarantee competency or proficiency in the performance of any procedures which may be discussed or taught during the meeting.

### **Educational Format**

CME activities may include the following formats: plenary sessions, debates, lectures, problem-based learning, and skill-set workshops.

### **Mission of SOAP Program Committee**

The mission of the Society's Program Committee is to provide anesthesiologists, obstetricians, and other physicians and members of related allied health specialties with the knowledge that will reinforce past learning as well as disseminate new concepts, practices, and skills involving anesthesia and analgesia for the pregnant woman.

#### Participation in the SOAP 2019 Sol Shnider, M.D. **Obstetric Anesthesia Meeting**

Attendance shall be open to all health practitioners, provided that they have registered for the meeting. CME credit will only be offered to M.D.s, D.O.s, and AAs or the equivalent. CE credit will be offered to CRNAs.

#### **Evaluations**

Electronic evaluations by questionnaire will address program content, presentations, and possible bias.

### **Special Needs Statement**

The Society for Obstetric Anesthesia and Perinatology is committed to making its activities accessible to all individuals and fully complies with the legal requirements of the Americans with Disabilities Act and the rules and regulations thereof. If you are in need of an accommodation, please do not hesitate to call the SOAP office at 414-389-8611 and/or submit a description of your needs in writing to soap@soap.org.

#### Statement of Need

The SOAP Sol Shinder, M.D. Obstetric Anesthesia Meeting provides a forum devoted exclusively to obstetric anesthesia at which leaders in the field present recent clinical updates and other relevant clinical information.

#### **Commercial Support Acknowledgement**

This activity is supported by educational grants. A complete list of supporters will be available in the course syllabus.

#### Disclosure

The American Society of Anesthesiologists remains strongly committed to providing the best available evidence-based clinical information to participants of this educational activity and requires an open disclosure of any potential conflict of interest identified by our faculty members. It is not the intent of the American Society of Anesthesiologists to eliminate all situations of potential conflict of interest, but rather to enable those who are working with the American Society of Anesthesiologists to recognize situations that may be subject to question by others. All disclosed conflicts of interest are reviewed by the educational activity course director/chair to ensure that such situations are properly evaluated and, if necessary, resolved. The American Society of Anesthesiologists educational standards pertaining to conflict of interest are intended to maintain the professional autonomy of the clinical experts inherent in promoting a balanced presentation of science. Through our review process, all American Society of Anesthesiologists activities are ensured of independent, objective, scientifically balanced presentations of information. Disclosure of any or no relationships will be made available for all educational activities.

#### Disclaimer

The information provided at this CME activity is for continuing education purposes only and is not meant to substitute for the independent medical judgment of a healthcare provider relative to diagnostic and treatment options of a specific patient's medical condition.

## Disclosures

Each presenter is required to disclose the existence of any financial interest and/or other relationship(s) (e.g. employee, consultant, grant recipient/research support) he/she might have with a.) the manufacturer(s) of any commercial product(s) to be discussed during his/her presenation and/or b.) the commercial contributor(s) of the activity.

### **Planner/Faculty Disclosures**

The following planning committee members and/or faculty have indicated that they have relevant financial relationships with commercial interests.

Alexander Butwick: Honoraria, Consulting Ashraf Habib: Funded Research, Consulting, Honoraria Brendan Carvalho: Funded Research

All other faculty, planners and staff have reported no relevant financial relationships with commercial interests.

# Pre-Meeting Workshop

### Thursday, March 14, 2019

SOAP is offering the Hands-on Ultrasound for the Obstetric Anesthesia Provider: Cardiac Ultrasound, Hemodynamic Exam, Pulmonary Evaluation, Ultrasound Guided TAP Blocks & Neuraxial Techniques and Basic Fetal Ultrasound Workshop the day before the full 2019 SOAP Sol Shnider, M.D. Obstetric Anesthesia Meeting begins.

Meeting attendees are encouraged to register for these events early. Please note that registration for the workshops requires a separate, additional fee from the full SOAP 2019 Sol Shnider, M.D. Obstetric Anesthesia Meeting registration.

Hands-on Ultrasound for the Obstetric Anesthesia Provider: Cardiac Ultrasound, Hemodynamic Exam, Pulmonary Evaluation, Ultrasound Guided TAP Blocks & Neuraxial Techniques and Basic Fetal Ultrasound

> **Co-Directors:** Kristine E. W. Breyer, MD and Lindsey Huddleston, MD, PhD

1:00 p.m. – 5:00 p.m. LOCATION Grand Hyatt Hotel

# Program Schedule

| Thursday            | y, March 14, 2019                                                                                                        | Session III: Enhanced Recovery and Cesarean<br>Anesthesia<br>Moderator: Brendan Carvalho, M.B., B.Ch., FRCA |                                                                                                                    |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| 1:00-5:00pm         | Workshops: Ultrasound<br>Co-Directors: Kristine Breyer, M.D.<br>& Lindsey Huddleston, M.D., Ph.D.                        | 1:30 – 2:00 p.m.                                                                                            | <b>Recommended ERAS Protocols for<br/>Cesarean Delivery</b><br>Ashraf S. Habib, M.B.,B.Ch., M.Sc.,<br>M.S.N., FRCA |  |
| Friday, N           | larch 15, 2019                                                                                                           | 2:00 – 2:30 p.m.                                                                                            | Setting up and Evaluation of a                                                                                     |  |
| 7:00 – 7:45 a.m.    | Registration and Continental<br>Breakfast                                                                                | -<br>•<br>•                                                                                                 | Successful ERAS Pathway for<br>Cesarean Delivery<br>Eric J. Hunt, M.D., Ph.D.                                      |  |
| 7:45 – 8:00 a.m.    | Opening Welcome                                                                                                          | 2:30 – 3:00 p.m.                                                                                            | Regional Blocks for Cesarean                                                                                       |  |
|                     | t <b>ing Labor Analgesia</b><br>Butwick, M.B.,B.S., FRCA, M.S.                                                           | •                                                                                                           | Delivery Analgesia: TAP, QL and<br>Beyond<br>Pedram Aleshi, M.D.                                                   |  |
| 8:00 – 8:30 a.m.    | CSE, DPE, Epidural: Is there an<br>Optimal Labor Analgesia Insertion                                                     | <b>3:00 – 3:15</b> p.m.                                                                                     | Panel Discussion                                                                                                   |  |
|                     | Technique?                                                                                                               | <b>3</b> :15 – 4:00 p.m.                                                                                    | Coffee Break                                                                                                       |  |
| 0.20 0.00 a m       | Lawrence Tsen, M.D.                                                                                                      | <ul> <li>Session IV: Tips and Techniques</li> <li>Moderator: Pamela D. Flood, M.D., M.A.</li> </ul>         |                                                                                                                    |  |
| 8:30 – 9:00 a.m.    | PIEB, CEI, PCEA: Is there an<br>Optimal Labor Analgesic<br>Maintenance Technique?<br>Brendan Carvalho, M.B., B.Ch., FRCA | 4:00 – 4:30 p.m.                                                                                            | Trouble-Shooting Labor Epidurals<br>and Failed Top-ups<br>Jalal A. Nanji, B.Sc., M.D., FRCPC                       |  |
| 9:00 – 9:30 a.m.    | Alternatives to Neuraxial Analgesia<br>for Labor Pain Management<br>Jennifer M. Lucero, M.D., M.S.                       | 4:30 – 5:00 p.m.                                                                                            | Reducing Obstetric General<br>Anesthesia: 10 Practical, Tested<br>Tips                                             |  |
| 9:30 – 9:45 a.m.    | Panel Discussion                                                                                                         | •                                                                                                           | Lawrence Tsen, M.D.                                                                                                |  |
| 9:45 – 10:30 a.m.   | Coffee Break                                                                                                             | 5:00 – 5:30 p.m.                                                                                            | Preventing and Treating Side<br>Effects of Neuraxial Opioids                                                       |  |
| Moderator: Lawrence | ,                                                                                                                        | •                                                                                                           | Ashraf S. Habib, M.B.,B.Ch., M.Sc.,<br>M.S.N., FRCA                                                                |  |
| 10:30 – 11:00 a.m.  | Management of Parturients with<br>Cardiac Disease                                                                        | <b>5</b> :30 – 5:45 p.m.                                                                                    | Panel Discussion                                                                                                   |  |
|                     | Ronald Pearl, M.D., Ph.D.                                                                                                | <b>6:00 – 7:30</b> p.m.                                                                                     | Reception                                                                                                          |  |
| 11:00 – 11:30 a.m.  | Latest on Pre-Eclampsia<br>Management and Care Bundles<br>Gillian Abir, M.B., Ch.B., FRCA                                | Saturday                                                                                                    | / March 16, 2019                                                                                                   |  |
| 11:30 – 12:00 p.m.  | Anesthetic Management of<br>Invasive Placental Disease                                                                   | 7:00 – 8:00 a.m.                                                                                            | Registration and Continental<br>Breakfast                                                                          |  |
| 12:00 – 12:15 p.m.  | John C. Markley, M.D., Ph.D<br>Coffee Break                                                                              |                                                                                                             | ric Anesthesia Safety Session Patient Safety Credit)                                                               |  |
| 12:15 – 1:30 p.m.   | Lunch (hosted)                                                                                                           | • Moderator: Gillian Abi                                                                                    | ir, M.B., Ch.B., FRCA                                                                                              |  |
| -                   |                                                                                                                          | • • • • • • •                                                                                               |                                                                                                                    |  |

**8:00 – 8:30 a.m**.

•

•

Current Evidence for the Prevention and Treatment of Spinal Hypotension Mark D. Rollins, M.D., Ph.D.

Program continued on next page

Session VIII: Clinical Conundrums in Obstetric

Anesthesia

### **Program Schedule**

### Saturday March 16, 2019 cont.

| 8:30 – 9:00 a.m.                           | Pregnant Patient with Chronic Pain                                                                                  | Moderator/Lead: Alexander Butwick, M.B.,B.S., FRCA, M.S.                                                                               |                                                                                                                  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| 0.30 – 9.00 a.m.                           | and Opioid Addiction<br>Pamela D. Flood, M.D., M.A.                                                                 | 4:00 – 5:30 p.m.                                                                                                                       | <b>Expert Panel:</b> Lawrence Tsen, MD,<br>Ashraf S. Habib, M.B.,B.Ch., M.Sc.,<br>M.S.N., FRCA, Edward T. Riley, |  |
| 9:00 – 9:30 a.m.                           | OSA in the Parturient: Implications<br>for Peri and Post-Operative Period<br>Jeremy Collins, FRCA, M.B., Ch.B.      |                                                                                                                                        | M.D., Jennifer M. Lucero, M.D., M.S.                                                                             |  |
| 9:30 – 9:45 a.m.                           | Panel Discussion                                                                                                    | Sunday                                                                                                                                 | March 17, 2019                                                                                                   |  |
| 9:45 – 10:30 a.m.                          | Coffee Break                                                                                                        | 7:00 – 8:00 a.m.                                                                                                                       | Registration and Continental                                                                                     |  |
| Session VI: New D<br>Moderator: Jennifer N | Developments and Concepts<br>1. Lucero, M.D., M.S.                                                                  | •                                                                                                                                      | Breakfast                                                                                                        |  |
| 10:30 – 10:55 a.m.                         | Point of Care Ultrasound in<br>Obstetric Anesthesia                                                                 |                                                                                                                                        | <b>gement Updates Safety</b><br><i>2 MOCA Patient Safety Credit)</i><br>Rollins, M.D., Ph.D.                     |  |
| 10:55 – 11:15 a.m.                         | Clemens M. Ortner, M.D., M.S., DESA<br>Neuraxial Ultrasound: Practical<br>Guide to Adoption                         | 8:00 – 8:30 a.m.                                                                                                                       | Anesthesia for Non-Obstetric<br>Surgery During Pregnancy<br>Gillian Abir, M.B., Ch.B., FRCA                      |  |
| 11:15 – 12:00 p.m.                         | Katherine M. Seligman, M.D.<br>Sam Hughes Lecture: Obstetric<br>Anesthesia Year in Review                           | 8:30 – 9:00 a.m.                                                                                                                       | Eating During Labor and the "Full<br>Stomach" Pre and Post-Delivery<br>Atisa B Britton, M.D.                     |  |
|                                            | Ashraf S. Habib, M.B.,B.Ch., M.Sc.,<br>M.S.N., FRCA                                                                 | 9:00 – 9:30 a.m.                                                                                                                       | Post-Partum Tubal Ligation:<br>Optimal Anesthetic Technique and                                                  |  |
| 12:00 – 12:15 p.m.                         | Panel Discussion                                                                                                    | •                                                                                                                                      | Timing                                                                                                           |  |
| 12:15 – 1:30 p.m.                          | Lunch on your own                                                                                                   | •                                                                                                                                      | Andrea J. Traynor, M.D.                                                                                          |  |
|                                            | etrical Hemorrhage Update                                                                                           | • 9:30 – 9:45 a.m.                                                                                                                     | Panel Discussion                                                                                                 |  |
| Moderator: Andrea Tra                      |                                                                                                                     | • 9:45 – 10:30 a.m.                                                                                                                    | Coffee Break                                                                                                     |  |
| 1:30 – 1:50 p.m.                           | <b>Optimal Uterotonic Administration</b><br><b>to Prevent and Treat Uterine Atony</b><br><i>Lawrence Tsen, M.D.</i> | <ul> <li>Session X: Complications and Uncommon</li> <li>Occurrences</li> <li>Moderator: Brendan Carvalho, M.B., B.Ch., FRCA</li> </ul> |                                                                                                                  |  |
| 1:50 – 2:10 p.m.                           | Obstetrical Management of Post-<br>Partum Hemorrhage<br>Maurice L. Druzin, M.D.                                     | 10:30 – 11:00 a.m.                                                                                                                     | Ethical Dilemmas in Obstetric<br>Anesthesia<br>Caitlin D. Sutton, B.S., M.D.                                     |  |
| 2:10 – 2:30 p.m.                           | Transfusion Practices for Obstetric<br>Hemorrhage: What's the latest?<br>Anil K Panigrahi, M.D., Ph.D.              | 11:00 – 11:30 a.m.                                                                                                                     | Management of Postpartum<br>Headaches<br>Jessica Ansari, M.D.                                                    |  |
| 2:30 – 2:50 p.m.                           | Pharmacological Management of<br>Obstetric Hemorrhage<br>Alexander Butwick, M.B.,B.S.,<br>FRCA, M.S.                | 11:30 – 12:00 a.m.                                                                                                                     | The Diagnosis and Management of<br>Peripartum Neurologic<br>Complications<br>Mark D. Rollins, M.D., Ph.D.        |  |
| 2:50 – 3:15 p.m.                           | Panel Discussion                                                                                                    | <b>12:00 – 12:15</b> p.m.                                                                                                              | Panel Discussion                                                                                                 |  |
| 3:15 – 4:00 p.m.                           | Coffee Break                                                                                                        | <b>12:15</b> p.m.                                                                                                                      | Adjourn                                                                                                          |  |
|                                            |                                                                                                                     |                                                                                                                                        |                                                                                                                  |  |



The Society for Obstetric Anesthesia and Perinatology would like to thank the following supporters and exhibitors of the 2019 Sol Shnider, M.D. Obstetric Anesthesia Meeting:



Gauss Surgical Website: www.gausssurgical.com Gauss Surgical is a medical technology company using Artificial Intelligence to make surgery and childbirth safer and more cost-effective. Gauss's flagship product, Triton, uses the iPad to monitor blood loss from digital images of sponges and canisters, with the goal of recognizing hemorrhage early, optimizing transfusion decisions, and assisting with sponge management. Triton has been adopted by a wide network of hospitals covering over 100,000 surgeries annually, and has been clinically proven to improve patient outcomes and reduce cost. Learn more at www.gausssurgical.com.



RIVANNA®

**Rivanna** Website: http://rivannamedical.com Accuro® by RIVANNA® is the world's first spinal navigation device designed to improve the safety, speed, and efficiency of epidural and spinal anesthesia. The revolutionary platform features BoneEnhance®, which visualization of bony versus soft tissue anatomy, and SpineNav3D<sup>™</sup>, which automates measurements of the spinal midline, epidural depth and trajectory. Accuro was engineered and commercialized by RIVANNA, an innovative medical device company headquartered in Charlottesville, VA. For anesthesia providers, certainty can be effortless with Accuro. For more information, visit rivannamedical.com.

# Bronze

### CERUS Cerus Corporation

Website: https://www.cerus.com

Cerus Corporation is a biomedical company focused in the field of blood safety. Cerus markets and sells the INTERCEPT Blood System for platelets and plasma in the United States

and around the world. The INTERCEPT Blood System reduces the risk of transfusion-transmitted infections by inactivating a broad range of pathogens such as viruses, bacteria, parasites and leukocytes that may be present in donated blood products. The INTERCEPT red blood cell system is in clinical development.



### **Envision Physician Services**

Website: https://www.evhc.net

Envision Physician Services is the nation's largest anesthesia services provider. With more than 780 service contracts in 48 states, our anesthesia group administers more than 2.6 million anesthetics a year. We are a clinician-centric, physician-led company at local, regional and national levels. We encourage, develop and recognize our clinical leaders, and we help physicians and advance practice providers focus on medicine, not its administrative burden. We invest in our clinicians, providing them with the tools, resources and technologies they need to deliver high-quality patient care, including quality and performance reporting, operational support and risk management resources.



WWW.IMD-INC.COM

### International Medical Development

Website: 3.5/5"/6"/7" epidural http://www.imd-inc.com

We are proud to say we are NEVER on backorder.

IMD also has new Fenestrated Needle for Peripheral Nerve Block to be used for post-operative pain relief after total knee replacement with excellent results. This unique needle has multiple side ports giving exceptional distribution of anesthetic.

IMD, Inc. offers the famous Gertie Marx needle and full line of spinal and epidural needles for Labor and Delivery, Pediatric, Myelograms and Lumbar Puncture.

Needles range from 50mm to 215mm. CSE sets with 3.5/5"/6"/7" epidural needles are matched with Gertie Marx spinal Needle. 2 on backorder



### Universal Anesthesia Services

Universal Anesthesia is looking for anesthesiologists who like to practice OB Anesthesia, are compassionate and empathetic physicians. Universal Anesthesia is a privately owned anesthesia company in Louisville, Kentucky, which provides anesthesia services for Norton Healthcare at two locations: Norton downtown and Norton Women's and Children's Hospital. Norton offers inpatient and outpatient medical/surgical care, full diagnostic services and 24-hour emergency care for men,

women and children. Labor and Delivery services include 33 labor and delivery rooms, 59 mother-baby rooms, 5 ORs on the Labor and Delivery units in addition to 16 rooms in the main OR and the lithotripsy unit. OB Emergency Departments care for 16+ weeks' gestation patients. 24/7 OB anesthesiologists, hospitalists and neonatologists provide support. Norton has been designated Blue Distinction Center + Maternity Care, 4-Star Kentucky Infants Safe and Strong (KISS) designation and has a 44 bed Level III Neonatal Intensive Care Unit. Obstetric Anesthesia Consultants is the company under the Universal Anesthesia umbrella providing OB Anesthesia Services to Norton Healthcare.



### Friday, March 15, 2019

Session I: Optimizing Labor Analgesia Moderator: Alexander Butwick, M.B., B.S., FRCA, M.S.

**CSE, DPE, Epidural:** Is there an Optimal Labor Analgesia Insertion Technique? *Lawrence Tsen, M.D.* 

**PIEB, CEI, PCEA: Is there an Optimal Labor Analgesic Maintenance Technique?** *Brendan Carvalho, M.B., B.Ch., FRCA* 

Alternatives to Neuraxial Analgesia for Labor Pain Management Jennifer M. Lucero, M.D., M.S.

#### The CSE, DPE, and Epidural Technique Is there an Optimal Labour Analgesia Technique?

#### SOAP Sol Shnider Obstetric Anesthesia Meeting,2019

Lawrence C. Tsen, MD Director, Center for Reproductive Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham & Women's Hospital Associate Professor in Anaesthesia Harvard Medical School



No Disclosures

"...from so simple a beginning, endless forms most beautiful and most wonderful have been and are being evolved"

> Origin of the Species Darwin

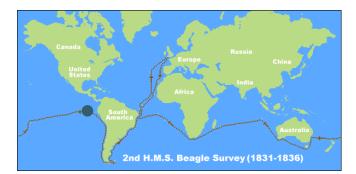


### A Darwinian Adventure

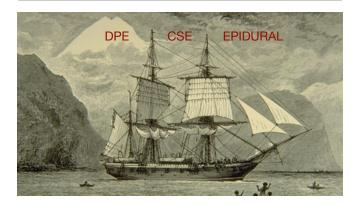
#### 1809

Shrewsbury

#### 1825


- Edinburgh
- · Limb amputation
- · Cambridge

#### 1831


HMS Beagle



### A Darwinian Adventure



### A Darwinian Adventure





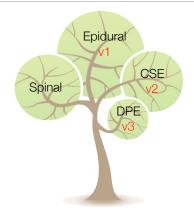


**Neuraxial Techniques** 

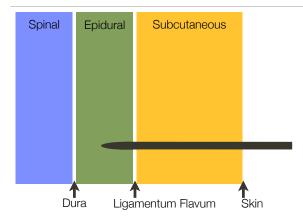
"Variability is not actually caused by man...but man can and does select the variations given to him by nature."



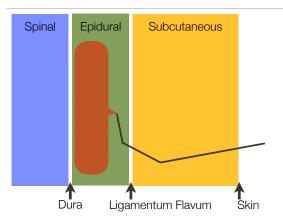
Origin of the Species Darwin Neuraxial Techniques


"Ideal Technique"

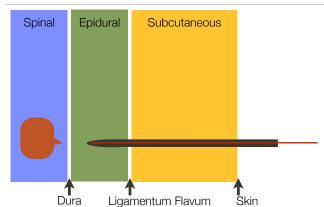
Quick Onset, Predictable Spread & Quality, Adjustable Depth & Duration, Minimal Motor Block, Minimal Maternal and Fetal Side Effects


> Origin of the Species Darwin

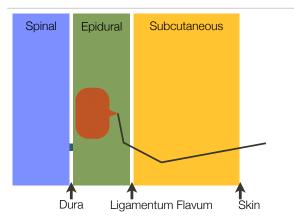



### Neuraxial Techniques

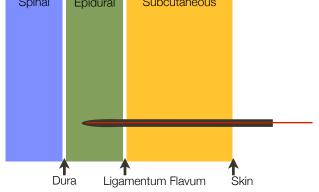



### **Epidural Technique**

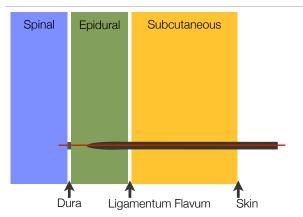



### **Epidural Technique**

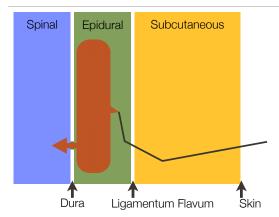



### CSE Technique




### **CSE** Technique




# Spinal Epidural Subcutaneous



### **DPE** Technique



### **DPE** Technique



### **DPE** Technique

| Study           | Needle | Anesthetic         | Effect |
|-----------------|--------|--------------------|--------|
| Thomas          | 27G    | 2% Lido 10 mL      |        |
| Suzuki          | 26G    | 26G 2% Mepiv 18 mL |        |
| Wilson          | 26G    | 0.125% Bup 12 mL   | Yes    |
| Cappiello, Tsen | 25G    | 0.25% Bup 12 mL    | Yes    |
| Chau, Tsen      | 25G    | 0.125% Bup 20 mL   | Yes    |
| Chau, Tsen      | 25G    | 0.1% Bup 16 mL     | Yes    |

#### Faster, Greater Sacral Spread No Difference Hypotension, Highest Sensory or PDPH

Thomas J, et al. Anesth 2005; Suzuki N, et al. A&A 1996; Cappiello E, Tsen LC. A&A 2008; Chau A, Tsen LC. A&A 2017; Wilson SH, et al. A&A 2018

### DPE Technique

| Study           | Needle Anesthetic   |                  | Effect |
|-----------------|---------------------|------------------|--------|
| Thomas          | 27G                 | 2% Lido 10 mL    | No     |
| Suzuki          | 26G                 | 2% Mepiv 18 mL   | Yes    |
| Wilson          | 26G                 | 0.125% Bup 12 mL | Yes    |
| Cappiello, Tsen | Cappiello, Tsen 25G |                  | Yes    |
| Chau, Tsen      | 25G                 | 0.125% Bup 20 mL | Yes    |
| Chau, Tsen      | 25G                 | 0.1% Bup 16 mL   | Yes    |

No Difference Inadequate, Sacral, Bilateral No Difference Hypotension, Highest Sensory or PDPH

Thomas J, et al. Anesth 2005; Suzuki N, et al. A&A 1996; Cappiello E, Tsen LC. A&A 2008; Chau A, Tsen LC. A&A 2017; Wilson SH, et al. A&A 2018

### **DPE** Technique

| Study           | Needle | Anesthetic       | Effect |
|-----------------|--------|------------------|--------|
| Thomas          | 27G    | 2% Lido 10 mL    | No     |
| Suzuki          | 26G    | 2% Mepiv 18 mL   | Yes    |
| Wilson          | 26G    | 0.125% Bup 12 mL | Yes    |
| Cappiello, Tsen | 25G    | 0.25% Bup 12 mL  | Yes    |
| Chau, Tsen      | 25G    | 0.125% Bup 20 mL | Yes    |
| Chau, Tsen      | 25G    | 0.1% Bup 16 mL   | Yes    |

Faster, Greater Sacral Spread, Bilateral

No Difference Hypotension, Highest Sensory or PDPH

Thomas J, et al. Anesth 2005; Suzuki N, et al. A&A 1996; Cappiello E, Tsen LC. A&A 2008; Chau A, Tsen LC. A&A 2017; Wilson SH, et al. A&A 2018

### **DPE** Technique

| Study           | Needle | Anesthetic        | Effect |
|-----------------|--------|-------------------|--------|
| Thomas          | 27G    | 27G 2% Lido 10 mL |        |
| Suzuki          | 26G    | 2% Mepiv 18 mL    | Yes    |
| Wilson          | 26G    | 0.125% Bup 12 mL  | Yes    |
| Cappiello, Tsen | 25G    | 0.25% Bup 12 mL   | Yes    |
| Chau, Tsen      | 25G    | 0.125% Bup 20 mL  | Yes    |
| Chau, Tsen      | 25G    | 0.1% Bup 16 mL    | Yes    |

Faster, Greater Sacral Spread, Bilateral No Difference Hypotension, Highest Sensory or PDPH

Thomas J, et al. Anesth 2005; Suzuki N, et al. A&A 1996; Cappiello E, Tsen LC. A&A 2008; Chau A, Tsen LC. A&A 2017; Wilson SH, et al. A&A 2018

### DPE Technique

| Study           | Needle                 | Anesthetic       | Effect |
|-----------------|------------------------|------------------|--------|
| Thomas          | 27G                    | 2% Lido 10 mL    | No     |
| Suzuki          | 26G                    | 2% Mepiv 18 mL   | Yes    |
| Wilson          | 26G                    | 0.125% Bup 12 mL | Yes    |
| Cappiello, Tsen | en 25G 0.25% Bup 12 mL |                  | Yes    |
| Chau, Tsen      | 25G                    | 0.125% Bup 20 mL | Yes    |
| Chau, Tsen      | 25G                    | 0.1% Bup 16 mL   | Yes    |

#### Faster, 67% Increase in Adequate Analgesia No Difference Hypotension, Highest Sensory or PDPH

Thomas J, et al. Anesth 2005; Suzuki N, et al. A&A 1996; Cappiello E, Tsen LC. A&A 2008; Chau A, Tsen LC. A&A 2017; Wilson SH, et al. A&A 2018

### **DPE** Technique

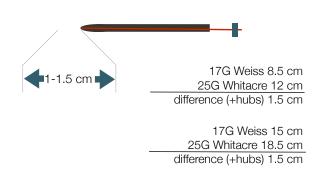
| Study           | Needle | Anesthetic       | Effect |
|-----------------|--------|------------------|--------|
| Thomas          | 27G    | 2% Lido 10 mL    | No     |
| Suzuki          | 26G    | 2% Mepiv 18 mL   | Yes    |
| Wilson          | 26G    | 0.125% Bup 12 mL | Yes    |
| Cappiello, Tsen | 25G    | 0.25% Bup 12 mL  | Yes    |
| Chau, Tsen      | 25G    | 0.125% Bup 20 mL | Yes    |
| Chau, Tsen      | 25G    | 0.1% Bup 16 mL   | Yes    |

Faster, Greater Sacral Spread, Bilateral No Difference Hypotxn, High Sensory, PDPH; CEI or PIEB

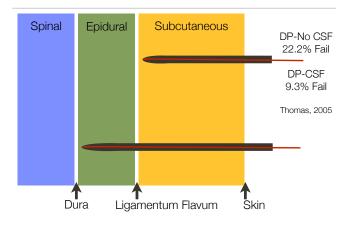
Thomas J, Anesth 2005; Suzuki N, et al. A&A 1996; Cappiello E,Tsen LC. A&A 2008 Chau A, Tsen LC. A&A 2017; Wilson SH, A&A 2018; Weale, Tsen, Chau SOAP 2018



### **ADVANTAGES**


### Technique Advantages

| Characteristic           | CSE | DPE | Epidural |
|--------------------------|-----|-----|----------|
| Location<br>Confirmation | Х   | X   |          |
|                          |     |     |          |
|                          |     |     |          |
|                          |     |     |          |
|                          |     |     |          |
|                          |     |     |          |

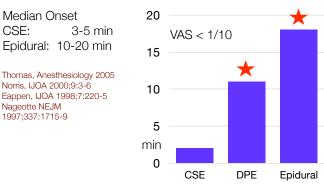

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Location Confirmation





### Location Confirmation




### Technique Advantages

| CSE | DPE    | Epidural |
|-----|--------|----------|
| Х   | X      |          |
| х   | Х      |          |
|     |        |          |
|     |        |          |
|     |        |          |
|     |        |          |
|     |        |          |
|     | X<br>X | X X      |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Median Onset



Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Technique Advantages

| Characteristic           | CSE | DPE | Epidural |
|--------------------------|-----|-----|----------|
| Location<br>Confirmation | X   | X   |          |
| Onset                    | Х   | X   |          |
| Sacral Spread            | Х   | X   |          |
|                          |     |     |          |
|                          |     |     |          |
|                          |     |     |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Sacral Spread

|                               | DPE/EPL |  | CSE/EPL |           |        |
|-------------------------------|---------|--|---------|-----------|--------|
|                               |         |  | RR      | 95%CI     | Р      |
| B <mark>S2</mark> @ 10<br>min |         |  | 2.54    | 1.69-3.80 | <0.001 |
| B <mark>S2</mark> @ 20<br>min |         |  | 1.60    | 1.26-2.03 | <0.001 |
| BS2 @ 30<br>min               |         |  | 1.18    | 1.01-1.30 | 0.034  |

#### Sacral Fibers Harder to Block

Nerve Roots-Larger in Diameter, Thicker Dura Mater Spread-Farther from Epidural Catheter, Sacral Resistance

Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Sacral Spread

|                               | DPE/EPL |           |        | CSE/EPL |           |        |
|-------------------------------|---------|-----------|--------|---------|-----------|--------|
|                               | RR      | 95%CI     | Ρ      | RR      | 95%CI     | Ρ      |
| B <mark>S2</mark> @ 10<br>min | 2.13    | 1.39-3.28 | <0.001 | 2.54    | 1.69-3.80 | <0.001 |
| B <mark>S2</mark> @ 20<br>min | 1.60    | 1.26-2.03 | <0.001 | 1.60    | 1.26-2.03 | <0.001 |
| B <mark>S2</mark> @ 30<br>min | 1.18    | 1.01-1.30 | 0.034  | 1.18    | 1.01-1.30 | 0.034  |

#### Sacral Fibers Harder to Block

Nerve Roots-Larger in Diameter, Thicker Dura Mater; Spread-Farther from Epidural Catheter, Sacral Resistance

Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Technique Advantages

| Characteristic           | CSE | DPE | Epidural |
|--------------------------|-----|-----|----------|
| Location<br>Confirmation | X   | X   |          |
| Onset                    | Х   | X   |          |
| Sacral Spread            | Х   | X   |          |
| Bilateral Spread         | Х   | X   |          |
|                          |     |     |          |
|                          |     |     |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### **Bilateral Spread**

#### Discontinuous, Heterogenous, **Potential Space** with Escape Routes

Harrison, BJA 1985; Blomberg, A&A 1986; Savolaine, Anesth 1988; Hogan, Anesth 1991, 1999; Collier Atlas Epiduralgrams

Patchy, One Sided: 5-8%

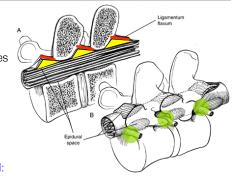
Pan PH, Bogard TD, Owen MD. IJOA 2004;13:227-233

### **Bilateral Spread**

|                 | DPE/EPL |           |         | CSE/EPL |           |        |
|-----------------|---------|-----------|---------|---------|-----------|--------|
|                 | RR      | 95%CI     | Ρ       | RR      | 95%CI     | Ρ      |
| BS2 @ 10<br>min | 2.13    | 1.39-3.28 | < 0.001 | 2.54    | 1.69-3.80 | <0.001 |
| BS2 @ 20<br>min | 1.60    | 1.26-2.03 | <0.001  | 1.60    | 1.26-2.03 | <0.001 |
| BS2 @ 30<br>min | 1.18    | 1.01-1.30 | 0.034   | 1.18    | 1.01-1.30 | 0.034  |

Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### **Technique** Advantages


| Characteristic           | CSE | DPE | Epidural |
|--------------------------|-----|-----|----------|
| Location<br>Confirmation | Х   | X   |          |
| Onset                    | Х   | X   |          |
| Sacral Spread            | Х   | X   |          |
| Bilateral Spread         | Х   | X   |          |
| Tested Catheter          |     | X   | X        |
|                          |     |     |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### **Tested Catheter**

| Failed Blocks                | Epidural | CSE   | Needle  |
|------------------------------|----------|-------|---------|
| Eappen<br>n = 4240           | 13.1%    | 7.2%  | 25G     |
| Norris<br>n =1660            | 1.3%     | 0.2%  | 25G     |
| Van de Velde<br>n = 661/2075 | 3.18%    | 1.49% | 27, 29G |
| Thomas<br>n = 248            | 9.3%     | 8%    | 27G     |
| Groden<br>n = 1507/3980      | 3.9%     | 2.1%  | 27G     |
| Booth<br>n = 955/1440        | 11.6%    | 6.6%  | 27G     |

Eappen, IJOA 1998; Norris, IJOA 2000; Van de Velde, Anaesth Intens Care 2001 Thomas, Anesth 2005; Bauer, Tsen, IJOA 2012; Groden IJOA 2016; Booth Anesth 2016;



### Technique Advantages

| Characteristic           | CSE | DPE   | Epidural |
|--------------------------|-----|-------|----------|
| Location<br>Confirmation | Х   | X     |          |
| Onset                    | Х   | X     |          |
| Sacral Spread            | х   | X     |          |
| Bilateral Spread         | х   | X     |          |
| Tested Catheter          |     | X     | х        |
| Progress of<br>Labor     | х   | X (?) |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Progress of Labor

CSE vs Epidural; Bolus

· Lower instrumental delivery; Technique matters?

CSE vs Epidural; CEI

- 100 Nulliparous < 3 cm
- CSE: Shorter labor; Delivery 30 min faster

CSE vs Parenteral Opioids; CEI

- 750 Nulliparous < 4 cm
- CSE: Shorter labor; Delivery 80 min faster

Collis, Lancet 1995; Tsen, Anesthesiology 1999; Wong, NEJM 2005



DISADVANTAGES

### Agents

"What a trifling difference must often determine which should survive...and which perish"

Darwin



### Technique Disadvantages

| Characteristic       | CSE | DPE | Epidural |
|----------------------|-----|-----|----------|
| Fetal<br>Bradycardia | Х   |     |          |
|                      |     |     |          |
|                      |     |     |          |
|                      |     |     |          |
|                      |     |     |          |
|                      |     |     |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Fetal Bradycardia

|           | CSE  | EPIDURAL | RR   | NNH |
|-----------|------|----------|------|-----|
| FHR abnl  | 7.7% | 6.7%     | 1.17 | 75  |
| FHR brady | 7.3% | 4.8%     | 1.81 | 28  |
| CS FHR    | 6%   | 7.8%     | 0.86 | -87 |
| CS Any    | 17%  | 16.6%    | 1.03 | 208 |
| Apgar < 7 | 1%   | 0.9%     | 1.17 | 623 |

Mardirosoff: Meta-analysis: 24 Trials (n=3513) Intrathecal Opioids, BJOG 2002

#### Minimize Effect: Fentanyl (<50 mcg), Sufentanil (<7.5 mcg)

|                   | Van de Velde RAPM 2001, Fun Minerva Anestesiol 2008 |       |          |  |
|-------------------|-----------------------------------------------------|-------|----------|--|
|                   | CSE                                                 | DPE   | EPIDURAL |  |
| FHR decelerations | 52.5%                                               | 45%   | 42.5%    |  |
| NICHD I to II     | 32.5%                                               | 12.5% | 12.5%    |  |

National Institute of Child Health and Human Development (NICHD) Classifications Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Technique Disadvantages

| Characteristic        | CSE | DPE | Epidural |
|-----------------------|-----|-----|----------|
| Fetal<br>Bradycardia  | х   |     |          |
| Uterine<br>Hypertonus | х   |     |          |
|                       |     |     |          |
|                       |     |     |          |
|                       |     |     |          |
|                       |     |     |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Uterine Hypertonus

|            | CSE      | DPE     | EPIDURAL  |
|------------|----------|---------|-----------|
| PRE UT/HT  | 5 (15%)  | 8 (20%) | 8 (20%)   |
| POST UT/HT | 18 (45%) | 4 (10%) | 5 (12.5%) |
| Tocolysis  | 2 (5%)   | 0 (0%)  | 1 (2.5%)  |

1 Hour UT/UH: Uterine Tachysystole; Uterine Hypertonus

National Institute of Child Health and Human Development (NICHD) Classifications Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Technique Disadvantages

| Characteristic        | CSE | DPE | Epidural |
|-----------------------|-----|-----|----------|
| Fetal<br>Bradycardia  | Х   |     |          |
| Uterine<br>Hypertonus | Х   |     |          |
| Workload              | Х   |     | Х        |
|                       |     |     |          |
|                       |     |     |          |
|                       |     |     |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Workload

|                          | CSE      | DPE        | EPIDURAL  |
|--------------------------|----------|------------|-----------|
| NONE                     | 20 (50%) | 31 (77.5%) | 20 (50%)  |
| ONE or MORE              | 20 (50%) | 9 (22.5%)  | 20 (50%)  |
| TIME TO TOP-UP           | 132 ± 85 | 250 ± 163  | 207 ± 133 |
| Catheter<br>Manipulation | 3 (7.5%) | 2 (5%)     | 4 (10%)   |
| Catheter<br>Replacement  | 0 (0%)   | 0 (0%)     | 0 (0%)    |

Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Technique Disadvantages

| Characteristic        | CSE | DPE | Epidural |
|-----------------------|-----|-----|----------|
| Fetal<br>Bradycardia  | Х   |     |          |
| Uterine<br>Hypertonus | Х   |     |          |
| Workload              | Х   |     | Х        |
| Adverse Events        | Х   |     |          |
|                       |     |     |          |
|                       |     |     |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Adverse Events

|             | CSE        | DPE       | EPIDURAL  |
|-------------|------------|-----------|-----------|
| NAUSEA      | 1 (2.5%)   | 1 (2.5%)  | 4 (10%)   |
| PRURITUS    | 27 (67.5%) | 4 (10%)   | 4 (10%)   |
| HYPOTENSION | 13 (32.5%) | 5 (12.5%) | 5 (12.5%) |

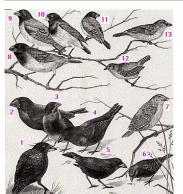
Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Technique Disadvantages

| Characteristic              | CSE   | DPE   | Epidural |
|-----------------------------|-------|-------|----------|
| Fetal<br>Bradycardia        | Х     |       |          |
| Uterine<br>Hypertonus       | Х     |       |          |
| Workload                    | Х     |       | Х        |
| Adverse Events              | Х     |       |          |
| High Spinal/<br>Motor Block |       |       | Х        |
| PDPH                        | X (?) | X (?) |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

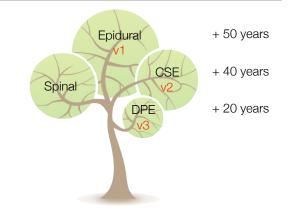
### Adverse Events


|                   | CSE        | DPE        | EPIDURAL   |
|-------------------|------------|------------|------------|
| HIGHEST LEVEL     | T4 [T2-T6] | T4 [T2-T8] | T4 [T2-T8] |
| MOTOR<br>BLOCKADE | 3 (7.5%)   | 6 (15%)    | 15 (37.5%) |
| PDPH              | 0 (0%)     | 0 (0%)     | 0 (0%)     |

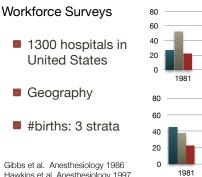
Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017



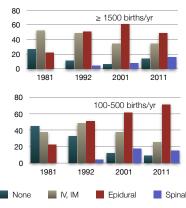
CONCLUSIONS


### **Optimal Neuraxial Technique?**




"Natural selection is daily and hourly scrutinizing, rejecting those that are bad, preserving all that are good"

"We see nothing of these slow changes in progress, until the hand of time has marked the lapse of ages" Darwin


### Neuraxial Techniques



### Neuraxial Techniques



Hawkins et al. Anesthesiology 1997 Bucklin et al. Anesthesiology 2005 Traynor et al. Anes Analg 2016



### Technique Advantages

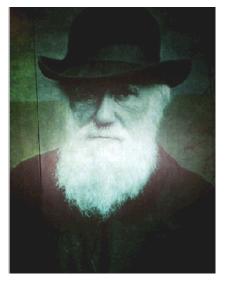
| Characteristic           | CSE | DPE   | Epidural |
|--------------------------|-----|-------|----------|
| Location<br>Confirmation | Х   | X     |          |
| Onset                    | Х   | X     |          |
| Sacral Spread            | Х   | x     |          |
| Bilateral Spread         | Х   | x     |          |
| Tested Catheter          |     | X     | Х        |
| Progress of<br>Labor     | x   | X (?) |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017

### Technique Disadvantages

| Characteristic                | CSE   | DPE   | Epidural |
|-------------------------------|-------|-------|----------|
| Fetal<br>Bradycardia          | х     |       |          |
| Uterine<br>Hypertonus         | X     |       |          |
| Workload                      | X     |       | Х        |
| Adverse Events                | X     |       |          |
| High Spinal<br>Motor Blockade |       |       | х        |
| PDPH                          | X (?) | X (?) |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello E, Tsen LC. Anesth Analg 2017




SOAP Sol Shnider Obstetric Anesthesia Meeting,2019

Lawrence C. Tsen, MD Director, Center for Reproductive Medicine, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham & Women's Hospital Associate Professor in Anaesthesia Harvard Medical School



### Questions?



### PIEB, CEI, PCEA: Is there an Optimal Labor **Analgesic Maintenance Technique?**

#### Brendan Carvalho MBBCh, FRCA, MDCH

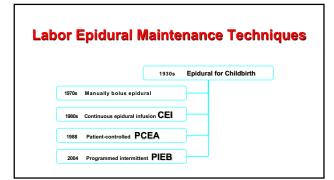
Professor, Chief Obstetric Anesthesia Division Stanford University School of Medicine Immediate Past President, Society for Obstetric Anesthesia and Perinatology

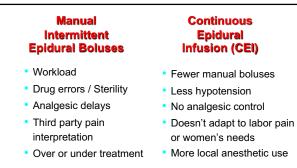


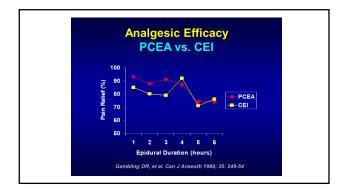







#### Disclosures

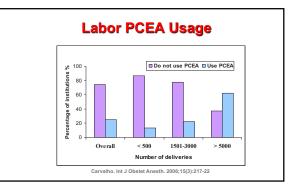

No relevant financial relationships or funding to disclose


All investigational products and off-labeled use will be disclosed

#### **Optimal Maintenance of Labor Neuraxial Analgesia Lecture Outline**

- Patient-controlled epidural analgesia (PCEA)
- Programmed intermittent epidural boluses (PIEB)
- Local anesthetic solutions
- Epidural pump settings





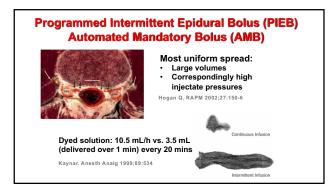


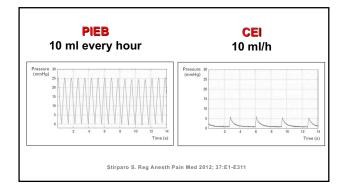

| PCEA vs. CEI                                                                                     |  |
|--------------------------------------------------------------------------------------------------|--|
| Halpern, Douglas (Eds) Evidence-Based Obstetric Anesthesia BMJ 2006                              |  |
| ↓ Local anesthetic use (24-45%)<br>↓ Motor block                                                 |  |
| ↑ Analgesic, Maternal Satisfaction<br>Control, autonomy, no analgesic delays<br>Less motor block |  |
| Workload: ↓19% in clinician top-ups                                                              |  |
| •                                                                                                |  |

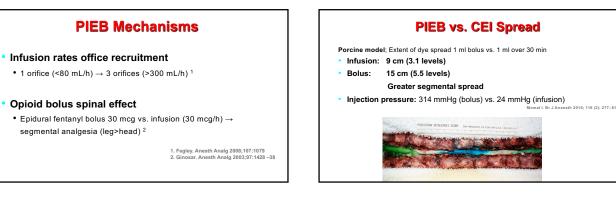
#### **PCEA: Potential Safety Concerns**

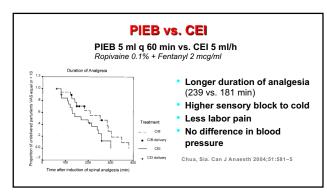
- Local anesthetic overdose from excessive selfadministration
  - Poor understanding of the PCEA technique
  - · Family member "trying to be helpful"
- Literature and clinical experience: Labor PCEA is very safe
- Potential harm with all techniques (CEI, manual boluses, PIEB)

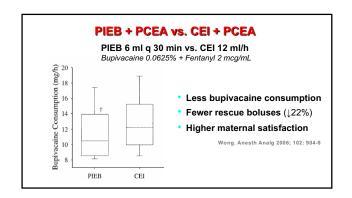



### **Background CEI with PCEA**

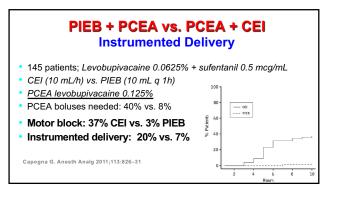

- Improved labor pain relief
- ↓ Clinician interventions
- ↑ Local anesthetic consumption
- Sleep uninterrupted
- Less active patient involvement

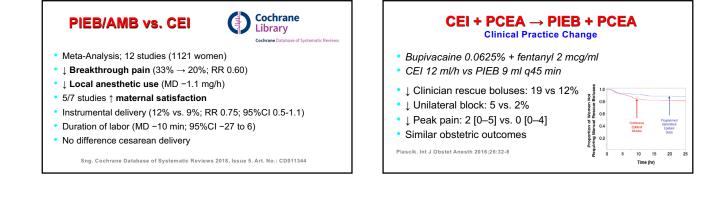

Halpern, Carvalho. Anesth Analg. 2009;108(3):921-8 ASA Practice Guidelines Anesthesiology 2007;106(4):843-63 Lim. Anesth Analg 2008;107,6:1968 Boselli E. Anesthesiology 2004;100:968 Bremerich DH. Int J Obstet Anesth 2005;14:114

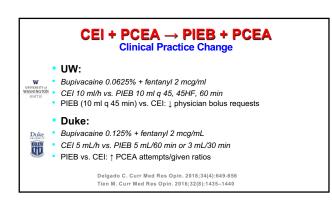


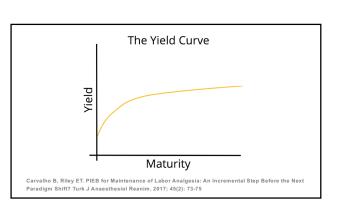


### PIEB + PCEA

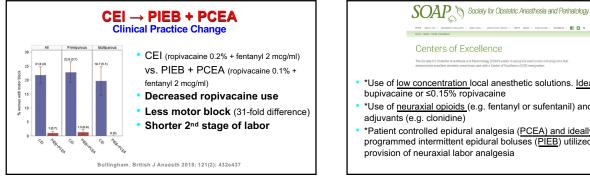


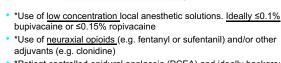


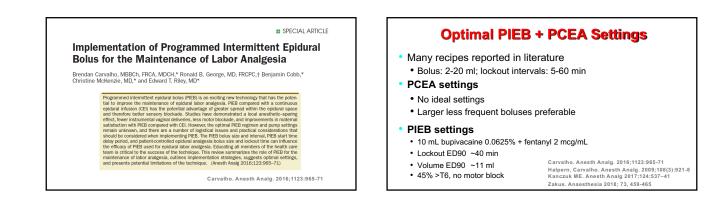



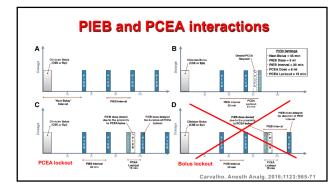


| Meta-Analysis Data Outcomes                | PIEB vs. CEI  | P-value  |
|--------------------------------------------|---------------|----------|
| incurrentarysis Data Outcomes              | 1 12D 13. CEI | -value   |
| Local Anesthetic Consumption               | -1.2 mg/h     | 0.01     |
| Maternal Satisfaction Scores               | 7.0 mm        | <0.00001 |
| Duration of 2 <sup>nd</sup> Stage of Labor | -12 min       | 0.04     |
| Mode of Delivery                           |               |          |
| Cesarean Delivery                          | OR 0.87       | 0.54     |
| Instrumented Delivery                      | OR 0.59       | 0.05     |
| Anesthesia Interventions                   | OR 0.56       | 0.08     |







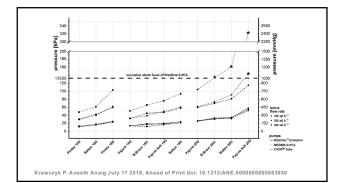






\*Patient controlled epidural analgesia (<u>PCEA) and ideally background</u> programmed intermittent epidural boluses (<u>PIEB</u>) utilized for the provision of neuraxial labor analgesia

SAUNTERNET - LINKS NEWS - EDUCATION - NEMBERS - 🛐 🖸 Q






### **PIEB Speed of Injection**

#### In-vitro study:1

- Pressures by delivery speeds: 100, 175, 300, 400 mL/h
- · 2 single-orifice + 2 multi-orifice epidural catheters
- Peak pressure ↑ with ↑ delivery speeds
- Clinical efficacy:2
- 100 ml/h vs. 300 ml/h PIEB: No difference analgesia quality
- Standard set (250 mL/h) → high-flow tubing (500 ml/h)
- **Downstream occlusion alarms!**

Klumpner TT. J Clin Anesth. 2016; 34:6327 Lange. Anesthesiology 2018; 128:745-53





- Unwitnessed first bolus due to delay start of PIEB • Occlusion alarm
- Respiratory depression (opioid bolus)
- Hypotension (local anesthetic bolus)
- Untested catheter (unrecognized intrathecal or intravascular)
   Betti F. AA Case Rep. 2017; 15;9(12):357-359
   Carvalho. Anesth Analg. 2016;1123:965-71

Inopportune bolus timing

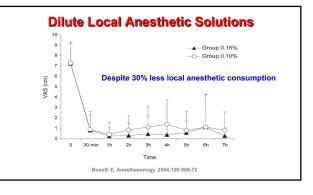
 Bolus during second stage labor in woman with motor block or difficulty pushing

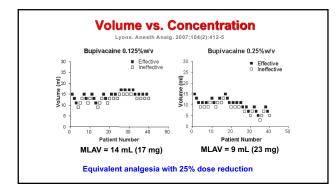
#### Recommended Epidural Settings Stanford University

- Loading:
- Epidural: 15 ml 0.125% bupivacaine + 10 mcg sufentanil CSE: 2.5 mg bupivacaine + 2.5 mcg sufentanil
- Maintenance Solution:
- 0.0625% bupivacaine + 0.4 µg/ml sufentanil

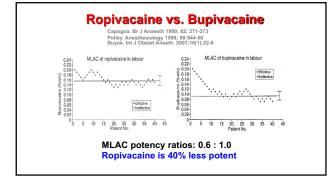
#### PCEA + PIEB Settings:

- PIEB 9 ml every 45 min
- 10 ml PCEA
  10 min lockout
- Delay 30 min


Dilute Local Anesthetic Solutions Reduce Motor Block



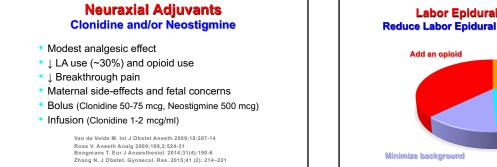

Gynecol 2017;130:1097-103

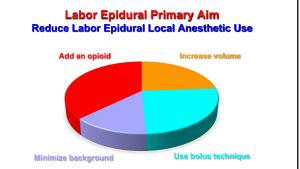

Shen. Ob

Second Stage of Labor Duration: 400 patients Epidural 0.08% ropivacaine + 0.4 mcg/mL sufentanil Epidural 52 min vs. Saline 51 min Spontaneous vaginal delivery rate similar (97% vs. 99%)








#### Ropivacaine vs. Bupivacaine PCEA Labor Analgesia

- Systematic review; 11 studies
- Concentration range: 0.05% to 0.20%
- Labor analgesia similar
- Increased motor block with bupivacaine (5 studies, most did not account for potency)
- "Both ropivacaine and bupivacaine are well suited for PCEA in labor"

Halpern, Carvalho. Anesth Analg. 2009;108(3):921-8





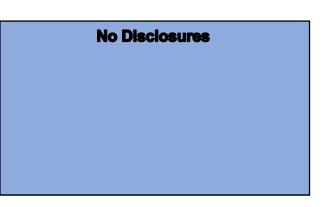
#### Labor Epidural Analgesic Maintenance Techniques Summary

- Modern neuraxial techniques provides excellent analgesia
- PCEA offers many advantages over CEI
- PCEA+PIEB more effective than PCEA+CEI
- Dilute local anesthetic epidural solutions facilitate effective analgesia with minimal obstetric effects
- Optimal settings PIEB + PCEA uncertain








#### **Epidural Labor Analgesia**

#### Overall rate neuraxial labor analgesia use:

- 82% (>1500 deliveries/year)
- 66% (<500) to 74% (500-1499)

Traynor. Anesth Analg 2016;122:1939–46





#### **OBJECTIVES**

- Review Current Contraindications for Neuraxial Techniques
- Discuss Maternal Diseases for Consideration of Alternatives to Neuraxial
- Discuss the Evidence for Remifentanil and Fentanyl PCA
- Discuss and Review Nitrous Oxide

#### **GOLD STANDARD: LABOR EPIDURAL**

- Catheter based technique utilized in early 1930's
- Advances made in early 80's with use of local anesthetics and opioids
- Techniques advanced: CSE and patient-controlled pumps
- Widely used in the U.S. with some centers up to 80% laboring women
- Survey of Women epidurals are the most common form of labor analgesia

### Listening to Mothers<sup>®</sup> III Pregnancy and Birth

| Survey Item                                       | LTM I<br>2000-02 | LTIM II<br>2005 | 2011-12 |
|---------------------------------------------------|------------------|-----------------|---------|
| Base: all survey participants                     |                  |                 |         |
| Had epidural or spinal analgesia for pain relief  | 63%              | 76%             | 67%     |
| Had narcotics by intravenous drip for pain relief | 30%              | 22%             | 16%     |
| Used nitrous oxide for pain relief                | 2%               | 3%              | 6%      |
| Used no pain medications                          | 20%              | 14%             | 17%     |

Report of the Third National U.S. Survey of Women's Childbearing Experiences May 201

#### CONTRAINDICATIONS TO EPIDURAL & SPINAL ANESTHESIA

- Patient Refusal or Inability to Cooperate
- Increased ICP from Mass Lesion
- Skin or Tissue Infection at Needle Placement Site
  - Frank Coagulopathy
- Uncorrected Maternal Hypovolemia
- Inadequate Experience with Technique

Chestnut's Obstetric Anesthesia 2009, 4<sup>th</sup> Edition, pg. 431

32 y G3P0 at 35w0d who presents to OB Anesthesia clinic for history of spinal fusion

- (Mid Thoracic to Sacral Scar) in Florida at the age of 17
- A) Offer Epidural
- B) Offer her a Continuous Spinal
- C) Offer her Nitrous
- D) Offer her nothing and hope for the best

#### Labor Analgesia Consumption and Time to Neuraxial Catheter Placement in Women with a History of Surgical Correction for Scoliosis: A Case-Matched Study

Jeanette R. Bauchat, MD,\* Robert J. McCarthy, PharmD,\* Tyler R. Koski, MD,† and Cynthia A. Wong, MD\*

- 41 women with surgical correction and 41 controls subjects requesting neuraxial labor analgesia
- · Neuraxial failure occurred in 12% of women with spinal instrumentation and none in control
- Mean time to complete the procedure was 41% longer
- · More redirects and more experienced proceduralist was required

October 2015 • Volume 121 • Number 4

32 y G3P0 at 35w0d who presents to OB Anesthesia clinic for history of

- spinal fusion (Mid Thoracic to Sacral Scar) in Florida at the age of 17
- Initial epidural placement difficult for fellow and attending. No CSF with DPE and no level after testing. Decision made to replace epidural after discussing with patient
- Pre-scanning with ultrasound revealed L- Harrington rod deep to scar and midline 2-3 cm lateral. Epidural placed easily with DPE and threaded easily
- Repeat epidural placement functioned
- Underwent cesarean delivery with functioning epidural

38 y.o. GGP1 at 37w2d who presents to OB fellow clinic for hx of SLE presumed lupus nephritis & presumed ITP  $\,$ 

- Pt has had a successful vaginal delivery in 2016 (due to thrombocytopenia was not a candidate for neuraxial but used nitrous and remifentanil)
- Her post partum course was complicated by severe thrombocytopenia, pre-eclampsia, and post-partum bleeding requiring transfusion
- During this pregnancy, she is on low dose plaquenil, 2-ASA per day
- Thrombocytopenia presumed to be immune-mediated complicated from her SLE, Goal plts > 50K

38 y.o. G6P1 at 37w2d who presents to OB fellow clinic for hx of SLE

presumed lupus nephritis & presumed ITP

A) Offer Epidural

B) Offer Opioid PCA

C) Offer her Nitrous

D) Offer her nothing and hope for the best

#### **Neuraxial Techniques in Obstetric and Non-Obstetric Patients with Common Bleeding Diatheses**

Systematic Review of 326 Neuraxial techniques on ITP patient 94 patient > 100k 204 patient had Plt count 75-100k 19 patient had Plt counts between 50-75k

9 patient Plts < 50k

No reports of hemorrhagic complications

(Anesth Analg 2009;109:648-60)

38 y.o. G6P1 at 37w2d who presents to OB fellow clinic for hx of SLE presumed lupus nephritis & presumed immune mediated thrombocytopenia

After discussion patient opted for a remifentanil PCA and delivered quickly without complication

#### **OPIOIDS**

- · Bind to specific receptors in CNS
- 4 major opioid receptors- mu ( $\mu_1$  and  $\mu_2$ ), kappa, delta, sigma
- Modulated through descending inhibitory pathway from periaqueductal gray matter to dorsal horn of spinal cord



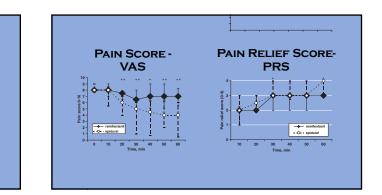
#### **FENTANYL**

- High protein binding
- Lipid soluble
- No active metabolites when crossing the placenta
- Metabolized by the cytochrome P system via liver
- Reversed by naloxone
- Slows gastric emptying
- Respiratory depression
- Crosses placenta quickly to fetal F/M = .50



#### REMIFENTANIL

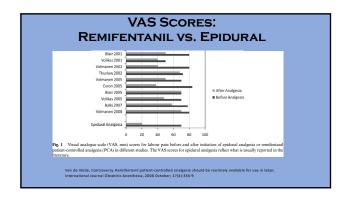
Ester structure


- Metabolized into inactive metabolite by non-specific esterases in plasma Metabolism allows for lack of accumulation
- Context sensitive half-life = 3.5 min, respiratory depression half-life = 2.5 min
- Rapid onset of analgesia = 30-60 sec; Peak at 2.5 min
- Crosses placenta and metabolized by placental and fetal nonspecific esterases
- F/M ratio = .50

#### LABOR PCA IS IT A VIABLE ALTERNATIVE TO LABOR **EPIDURAL?**

Intravenous remifentanil vs. epidural levobupivacaine with fentanyl for pain relief in early labour: a randomised, controlled, double-blinded study

<sup>3</sup>, J. SARVELA<sup>2</sup>, E. I. AKURAL<sup>3</sup>, T. RAUDASKOSK<sup>4</sup>, K. KORTTLA<sup>2</sup> and S. ALAHURTA<sup>3</sup> al Hospital, Revanismi, Finland, <sup>3</sup>Department of Anasobasia and Intensive Care, Hidisidi University Control Hospital, Helsinki, rimmel of Anasobasidegy, University of Odio / Only, Findund and "Department of Odistristics and Gauscology, University of Statement of Anasobasidegy, University of Odio / Only.


Pain scores were lower in epidural group, which indicates epidural was superior for pain control However, pain relief scores were no different between the groups



#### **REMIFENTANIL AND LABOR:**

|                               | Remifentanil PCIA<br>bolus dose                                                             | No.     | Comparator group                                                                        | Lockout<br>interval<br>(min) | Nitrous<br>oxide<br>used | Median or reduction<br>in pain scores                                         | Conversion<br>to neuraxial<br>analgesia |
|-------------------------------|---------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------------------------------------------------------|-----------------------------------------|
| Blair et al. <sup>14</sup>    | 0.25-0.5 µg · kg <sup>-1</sup> · min <sup>-1</sup>                                          | 21      | None                                                                                    | 2                            | No                       | Median 50 mm                                                                  | 4 of 21                                 |
| Thurlow et al.16              | 0.2 ag · kg <sup>-1</sup> · min <sup>-1</sup>                                               | 18      | IM meperidine                                                                           | 2                            | Yes                      | Median 48 mm                                                                  | 7 of 18                                 |
| Volmanen et al. <sup>18</sup> | 0.4 µg · kg <sup>-1</sup> · min <sup>-1</sup>                                               | 20      | Nitrous oxide                                                                           | 1                            |                          | Reduction of 15 mm                                                            | Not reported                            |
| Blair et al. <sup>15</sup>    | 40 µg                                                                                       | 20      | PCIA meperidine                                                                         | 2                            | Yes                      | Median 64 mm                                                                  | 2 of 20                                 |
| Volmanen et al.13             | 0.2-0.8 µg · kg <sup>-1</sup> · min <sup>-1</sup>                                           | 17      | None                                                                                    | 1                            | No                       | Reduction of 42 mm                                                            | Not reported                            |
| Evron et al. <sup>17</sup>    | 0.27-0.93 µg · kg <sup>-1</sup> · min <sup>-1</sup>                                         | 43      | Meperidine infusion                                                                     | 3                            | No                       | Median 35 mm                                                                  | 4 of 43                                 |
| Volikas et al. <sup>12</sup>  | 0.5 µg · kg <sup>-1</sup> · min <sup>-1</sup>                                               | 50      | None                                                                                    | 2                            | No                       | Mean 46 mm                                                                    | 5 of 50                                 |
| Balki et al. <sup>11</sup>    | 0.25-1.0 µg · kg <sup>-1</sup> · min <sup>-1</sup><br>variable bolus +<br>fixed IV infusion | 10      | 0.25 μg · kg <sup>-1</sup> · min <sup>-1</sup><br>variable infusion +<br>fixed IV bolus | 2                            | No                       | Reduction of 56 mm<br>vs 41 mm(variable<br>bolus versus variable<br>infusion) | 1 of 20                                 |
| Volmanen et al. <sup>19</sup> | 0.3-0.7 µg · kg <sup>-1</sup> · min <sup>-1</sup>                                           | 24      | Epidural                                                                                | 1                            | No                       | Median 73 mm                                                                  | Not reported                            |
| All pain scores reported in   | millimeter (0-100 mm scale) for co                                                          | mpariso | n between studies.                                                                      |                              |                          |                                                                               |                                         |

Hinova et al. Systemic Remifentanil for Labor Analgesia. Anesthesia & Analgesia. 2009; 109(6): 1925-9.



#### Remifentanil patient-controlled analgesia in labour: six-year audit of outcome data of the RemiPCA SAFE Network (2010–2015)

A.A. Melber,<sup>a</sup> Y. Jelting,<sup>b</sup> M. Huber,<sup>c</sup> D. Keller,<sup>d</sup> A. Dullenkopf,<sup>c</sup> T. Girard,<sup>†</sup> P. Kranke<sup>b</sup> <sup>b</sup>Department of Anaesthesiology, Spital Minningen, Insel Gruppe 4G, Minningen, Switzerland <sup>b</sup>Department of Anaesthesiology, University Hospital Warshag, Warshag, Germany <sup>c</sup> Minningen, Switzerland <sup>b</sup>Storingen Combinesy and Data Analysis, Statistik and Bernaue, Kim Ah, Barbigen, Switzerland <sup>b</sup>Storingen Combinesy and Data Analysis, Statistik and Bernaue, Kim Ah, Branefeld, Francefeld, Switzerland <sup>b</sup>Department of Anaesthesia and Immune Care Medicine, Spital Througen Transfeld, Switzerland <sup>b</sup>Department of Anaesthesia and Immune Care Medicine, Spital Througen Transfeld, Switzerland <sup>b</sup>Department of Anaesthesia and Immune Care Medicines, Spital Througen Transfeld, Switzerland

- 5740 data sets No need for maternal ventilation or CPR
  Neonatal CPR *potentially* related to remi occurred in 0.3%
  Moderate rate of maternal hypoxia (O2 sat <94% in ~25%)</li>

RemiPCA SAFE Network (2010–2015). Int J Obstet Anesth (2019), https://doi.org/10.1016/j.ijoa.2018.12.004

|                                                                                                                  |                                                                                                           |                                                                        |                                                                        | 2010                                                             | 2011                                                                       | 2012                                                                   | 2013                                                     | 2014                                 | 2015                                                              |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|
| Recommended bolus                                                                                                | dose [µg]                                                                                                 |                                                                        |                                                                        | 20-40                                                            | 20-40                                                                      | 20-40                                                                  | 10-30                                                    | 10-30                                | 10-30                                                             |
| Recommended SpO <sub>2</sub>                                                                                     | threshold for                                                                                             | supplemental o                                                         | xygen                                                                  | <92%                                                             | <92%                                                                       | <92%                                                                   | <92%                                                     | <94%                                 | <94%                                                              |
| Recommended interv<br>start of PCA (h)                                                                           | al between oth                                                                                            | er opioids prior                                                       | to PCA and                                                             | NA                                                               | NA                                                                         | NA                                                                     | >4                                                       | >4                                   | >4†                                                               |
| Recommended time                                                                                                 | to stop PCA p                                                                                             | rior to cord cla                                                       | mping (min)                                                            | NA                                                               | NA                                                                         | NA                                                                     | >5-10                                                    | >5-10                                | >5-10                                                             |
| Standardised docume                                                                                              | entation of sev                                                                                           | ere incidents                                                          |                                                                        | NA                                                               | NA                                                                         | yes                                                                    | yes                                                      | yes                                  | yes                                                               |
| RemiPCA Alert func                                                                                               | tion                                                                                                      |                                                                        |                                                                        | NA                                                               | NA                                                                         | NA                                                                     | NA                                                       | yes                                  | yes                                                               |
| (with detailed repo                                                                                              | /                                                                                                         | ole; PCA: patient                                                      | -controlled anal;                                                      | gesia; SpO <sub>2</sub> :                                        | oxygen sat                                                                 | uration.                                                               |                                                          |                                      |                                                                   |
| Mandatory guideline.                                                                                             | NA: not applical                                                                                          |                                                                        |                                                                        |                                                                  |                                                                            |                                                                        | 2015                                                     |                                      | Tatal                                                             |
| <sup>†</sup> Mandatory guideline. <sup>†</sup><br>Table 3 Maternal                                               | NA: not applical<br>side effects<br>2010                                                                  | 2011                                                                   | 2012                                                                   | 2013                                                             |                                                                            | 2014                                                                   | 2015                                                     |                                      | Total                                                             |
| <sup>†</sup> Mandatory guideline. <sup>†</sup><br>Table 3 Maternal                                               | NA: not applical<br>side effects<br>2010<br>56/423                                                        | 2011 254/632                                                           | 2012<br>239/762                                                        | 2013                                                             | 15 3                                                                       | 2014<br>22/1256                                                        | 306/12                                                   | 41 1                                 | 415/5189                                                          |
| Mandatory guideline. :<br>Table 3 Maternal<br>SpO <sub>2</sub> < 94%                                             | NA: not applical<br>side effects<br>2010<br>56/423<br>(13.6%)                                             | 2011<br>254/632<br>(40.2%)                                             | 2012<br>239/762<br>(31.4%)                                             | 2013<br>238/88<br>(26.9%                                         | 15 3                                                                       | 2014<br>22/1256<br>(25.6%)                                             | 306/12<br>(24.7%                                         | 41 I                                 | 415/5189<br>(27.3%)                                               |
| <sup>†</sup> Mandatory guideline. :<br><b>Table 3 Maternal</b><br>SpO <sub>2</sub> < 94%                         | NA: not applical<br>1 side effects<br>2010<br>56/423<br>(13.6%)<br>97/435                                 | 2011<br>254/632<br>(40.2%)<br>150/659                                  | 2012<br>239/762<br>(31.4%)<br>231/798                                  | 2013<br>238/88<br>(26.9%<br>276/97                               | 15 3<br>6) 1                                                               | 2014<br>22/1256<br>(25.6%)<br>71/1355                                  | 306/12<br>(24.7%<br>309/13                               | 41  <br>6)<br>34                     | 415/5189<br>(27.3%)<br>434/5556                                   |
| <sup>1</sup> Mandatory guideline. <sup>1</sup><br>Table 3 Maternal<br>SpO <sub>2</sub> < 94%<br>Sedation         | NA: not applical<br>1 side effects<br>2010<br>56/423<br>(13.6%)<br>97/435<br>(22.3%)                      | 2011<br>254/632<br>(40.2%)<br>150/659<br>(22.8%)                       | 2012<br>239/762<br>(31.4%)<br>231/798<br>(28.9%)                       | 2013<br>238/88<br>(26.9%<br>276/97<br>(28.3%                     | 15 3<br>6) 1<br>15 3                                                       | 2014<br>22/1256<br>(25.6%)<br>71/1355<br>(27.4%)                       | 306/12<br>(24.7%<br>309/13<br>(23.2%                     | 41  <br>6)<br>34  <br>6)             | 415/5189<br>(27.3%)<br>434/5556<br>(25.8%)                        |
| Mandatory guideline.                                                                                             | NA: not applical<br>side effects<br>2010<br>56/423<br>(13.6%)<br>97/435<br>(22.3%)<br>89/435              | 2011<br>254/632<br>(40.2%)<br>150/659<br>(22.8%)<br>126/659            | 2012<br>239/762<br>(31.4%)<br>231/798<br>(28.9%)<br>160/798            | 2013<br>238/88<br>(26.9%<br>276/97<br>(28.3%<br>175/98           | 15 3<br>6) 1<br>15 3<br>6) 1                                               | 2014<br>22/1256<br>(25.6%)<br>71/1355<br>(27.4%)<br>85/1361            | 306/12<br>(24.7%<br>309/13<br>(23.2%<br>206/13           | 41 1<br>5)<br>34 1<br>5)<br>35       | 415/5189<br>(27.3%)<br>434/5556<br>(25.8%)<br>941/5568            |
| <sup>1</sup> Mandatory guideline. 1<br>Table 3 Maternal<br>SpO <sub>2</sub> < 94%<br>Sedation<br>Nausea/Vomiting | NA: not applical<br>1 side effects<br>2010<br>56/423<br>(13.6%)<br>97/435<br>(22.3%)<br>89/435<br>(20.5%) | 2011<br>254/632<br>(40.2%)<br>150/659<br>(22.8%)<br>126/659<br>(19.1%) | 2012<br>239/762<br>(31.4%)<br>231/798<br>(28.9%)<br>160/798<br>(20.1%) | 2013<br>238/88<br>(26.9%<br>276/97<br>(28.3%<br>175/98<br>(17.9% | 15 3<br>6) 1<br>15 3<br>6) 1<br>80 1                                       | 2014<br>22/1256<br>(25.6%)<br>71/1355<br>(27.4%)<br>85/1361<br>(13.6%) | 306/12<br>(24.7%<br>309/13<br>(23.2%<br>206/13<br>(15.4% | 41 1<br>5)<br>34 1<br>5)<br>35<br>6) | 415/5189<br>(27.3%)<br>434/5556<br>(25.8%)<br>941/5568<br>(16.9%) |
| <sup>1</sup> Mandatory guideline. <sup>1</sup><br>Table 3 Maternal<br>SpO <sub>2</sub> < 94%<br>Sedation         | NA: not applical<br>side effects<br>2010<br>56/423<br>(13.6%)<br>97/435<br>(22.3%)<br>89/435              | 2011<br>254/632<br>(40.2%)<br>150/659<br>(22.8%)<br>126/659            | 2012<br>239/762<br>(31.4%)<br>231/798<br>(28.9%)<br>160/798            | 2013<br>238/88<br>(26.9%<br>276/97<br>(28.3%<br>175/98           | 15 3<br>5 3<br>5 3<br>6) 1<br>15 3<br>6) 1<br>10 1<br>10 1<br>10 1<br>10 1 | 2014<br>22/1256<br>(25.6%)<br>71/1355<br>(27.4%)<br>85/1361            | 306/12<br>(24.7%<br>309/13<br>(23.2%<br>206/13           | 41 1<br>34 1<br>35<br>57             | 415/5189<br>(27.3%)<br>434/5556<br>(25.8%)<br>941/5568            |

#### **ROUTINELY AVAILABLE REMIFENTANIL?**

• Retrospective study in Ireland performed in 2007

- In 2005 remifentanil PCA for labor analgesia was routinely available
- During the two year period:
  - 28% opted for remifentanil
  - 22% opted for epidural
- Conversion from remifentanil to epidural was 10%

Hill, D. Remifentanil patient-controlled analgesia should be routinely available for use in labor UOA, (2009) 17, 336-342

#### **REMIFENTANIL VS FENTANYL**

Remifentanil versus fentanyl for intravenous patient-controlled labour analgesia: an observational study Rémifentanil versus fentanyl pour l'analgésie intraveineuse contrôlée par les patientes en travail: étude observationnelle

Radhika Marwah, MD · Samah Hassan, MD · Jose C. A. Carvalho, MD, PhD · Mrinalini Balki, MD

There is no difference in pain scores between Remifentanil and Fentanyl PCA, Both provide a moderate amount of pain relief. Pick your poison... Remifentanil-more maternal oxygen desaturation

vs. Fentanyl-associated with higher need for neonatal res

Labour pain with remifentanil patient-controlled analgesia versus epidural analgesia: a randomised equivalence trial

SLM Logtenberg,\* K Oude Rengerink,\* CJ Verhoeven,<sup>b,c</sup> LM Freeman,<sup>d</sup> ESA van den Akker,\* MB Godfried,<sup>i</sup> E van Beek,<sup>8</sup> OWHM Borchert,<sup>®</sup> N Schuitemaker,<sup>1</sup> ECSM van Woerkens,<sup>1</sup> I Hostijn,<sup>k</sup> JM Middeldorp,<sup>d</sup> JA van der Post,\* BW Mol<sup>1</sup>

N=408

N=408 Randomized Equivalence Trial Remi-PCA vs Epidural Analgesia Primary Outcome - satisfaction with pain relief measured hourly with VAS Secondary Outcome-overall satisfaction with pain relief, Pain intensity scores during labor mode of delivery, and maternal and neonatal outcomes

### on with pain relief during labor with Remi-PCA and Epidural ivalent methods of labor analgesia. tisfaction with analgesia in Remi-PCA group ain intensity in the Remi-PCA group

as: Legtenberg SLM, Oude Rengerink K, Verhoeven CJ, Freeman LM, van den Akker ESA, Godfried MB, van Beek F, Borchert er N, van Woerkens ECSM, Hostijn L, Middeldorp JM, van der Post JA, Mol BW. Labour pain with remifentantl patient-controlle und andgesia: a randomised equivalence trial. BJCG 2016; DOI: 10.1111/1147-0523.14181.

#### **ANY OTHER ALTERNATIVES?**

Nitrous oxide

#### **NITRONOX**

A qualitative analysis of parturients' experiences using nitrous

Michael G. Richardson MD 😳 | Britany L. Raymond MD | Curtis L. Baysinger MD |

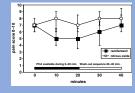
• Determinants of satisfaction more variable, than

oxide for labor analgesia: It is not just about pain relief

Bradley T. Kook MD | David H. Chestnut MD

• Qualitative content analysis

• 6507 deliveries 2011-2014


• 12% used nitrous oxide

previously thought

- Patient breathes nitrous oxide and oxygen via tight face mask
- Nitrous oxide better than opioid
   Usually 50% nitrous oxide in 50% oxygen
   Rapid onset, rapid elimination
   Patient control
- Effective for some patients
- No ongoing dose during pushing

#### Comparison of remifentanil and nitrous oxide in labour analgesia

P. VOMANEN<sup>1</sup>, E. AKUERA<sup>2</sup>, T. RAUDASCOSK<sup>3</sup>, P. OHTONEN<sup>4</sup> and S. ALABUHTA<sup>2</sup> <sup>1</sup>Department of Anaethesis and Intensive Care, Laphand Central Hospital, Recumieni, Departments of <sup>3</sup>Anaethesiology, <sup>3</sup>Obstetrics and Gauscology, and <sup>3</sup>Stargere, University Odus, Odus, Funda Intellation



Remifentanil IVPCA provides better labor analgesia compared to nitrous oxide

### WILEY

SATISFACTION VS ANALGESIA

- 90% > 8 satisfaction scores
- 64% intermediate to low analgesia scores
- Women cited benefits of partial analgesia
- Partial analgesia allows for enhanced ability to cope with labor pain

Birth. 2019;46:97-104.

Т

#### CONCLUSIONS

- Epidural analgesia provides overall best pain relief in labor
- PCA opioid options exist, but with certain side effects
- Remifentanil an option for those who contraindicated to neuraxial
- Nitrous is an alternative, but pain scores higher than PCA-opioid
- Nitrous has a role in labor analgesia pain
- Nitrous does not require anesthesia provider to administer

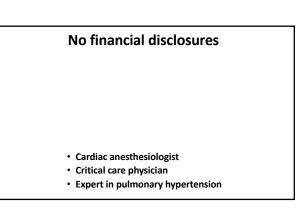


### Friday, March 15, 2019

### Session II: Comorbidities and High-Risk Patients Moderator: Lawrence Tsen, M.D.

Management of Parturients with Cardiac Disease Ronald Pearl, M.D., Ph.D.

Latest on Pre-Eclampsia Management and Care Bundles Gillian Abir, M.B., Ch.B., FRCA


Anesthetic Management of Invasive Placental Disease John C. Markley, M.D., Ph.D

#### Parturients with Cardiac Disease or Pulmonary Hypertension

· ● ● Ronald Pearl, MD, PhD, FASA Professor and Chair Department of Anesthesiology Stanford University Rpearl@stanford.edu



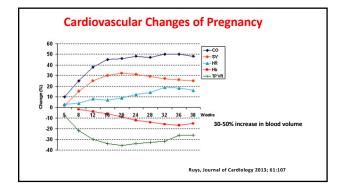




#### **Cardiovascular Disease**

- 1-2% of parturients
- Leading cause of maternal mortality in the developed world
- Fetal morbidity (premature labor, IUGR, congenital anomalies)
- Fetal mortality




#### The 7 Steps to Success

- Recognition of the disorder
- Assessment of its severity
- Perioperative risk assessment
- Preoperative optimization of the patient
- Choice of anesthetic technique
- · Choice of monitoring
- Treatment of decompensation

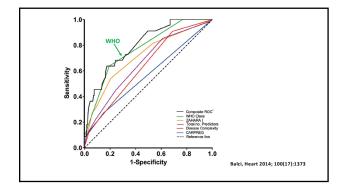
#### **Heterogeneity of Cardiovascular Disease**

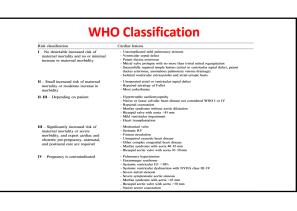
• Anatomy

- Cardiomyopathy, valvular disease, congenital heart disease without shunts, CHD with shunts, aortopathy, pulmonary hypertension
- Functional status
  - -Maternal mortality 0.4% with NYHA I or II
- Maternal mortality 6.8% with NYHA III or IV
- Arrhythmias



#### **Changes During Labor**

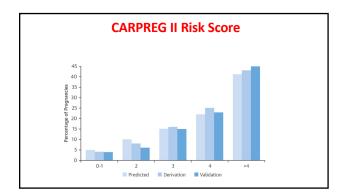

- Further increases in CO and SV with labor
- Contractions: Autotransfusion of 300-500 ml; 30-50% increase in CO
- · Painful contractions: Increased SVR, increased PVR
- Valsalva: Decreased venous return
- After delivery, preload increases 30% due to relief of aortocaval compression and uterine autotransfusion; CO increases 50%; SVR increases over days

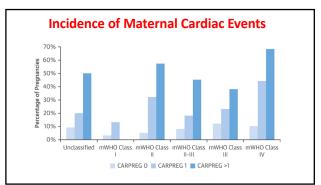

#### Interactions with Cardiovascular Disease

- Obstructive lesions (mitral stenosis, aortic stenosis, pulmonary hypertension) - Increased flow results in increased gradient
  - Tachycardia increases mitral gradient in MS Decreased preload results in decreased cardiac output
- Shunting lesions (VSD, complex congenital heart disease)
- Decreased SVR or increased PVR increases right-to-left shunt Increased SVR or decreased PVR increases left-to-right shunt
- Aortopathy (Marfan syndrome, bicuspid aortic valve) Hypertension results in aortic dissection or rupture
- Cardiomyopathy
- Increased blood volume results in pulmonary edema
   High incidence of arrhythmias
- Need for increased cardiac output in pregnancy - ACEIs, ARBs, and aldosterone antagonists require discontinuation

#### **Risk Assessment**

- History, pathology, ECG, functional status, TTE, BNP, aortic diameter, arrhythmias
- Progression of disease during pregnancy
- Formal risk assessment systems
  - -CARPREG
  - -ZAHARA
  - -WHO risk stratification model




#### **WHO Classification**

- Class 1: Mitral valve prolapse with trivial MR, successfully repaired ASD
- Class 2: Unrepaired ASD; repaired tetralogy of Fallot
- Class 3: Cyanotic heart disease; Fontan circulation; mechanical valve; systemic right ventricle; bicuspid aortic valve with aorta 45-50 mm; Marfan with aorta 40-45 mm
- Class 4: Pulmonary hypertension; severe AS; Marfan syndrome with aorta > 45 mm; severe LV dysfunction

| CARPREG II Risk Score                                               |        |  |  |
|---------------------------------------------------------------------|--------|--|--|
| Predictor                                                           | Points |  |  |
| Prior cardiac events or arrhythmias                                 | 3      |  |  |
| Baseline NHYA II-IV or cyanosis                                     | 3      |  |  |
| Mechanical valve                                                    | 3      |  |  |
| Ventricular dysfunction                                             | 2      |  |  |
| High risk left-sided valve disease/<br>LV outflow tract obstruction | 2      |  |  |
| Pulmonary hypertension                                              | 2      |  |  |
| Coronary artery disease                                             | 2      |  |  |
| High risk aortopathy                                                | 2      |  |  |
| No prior cardiac intervention                                       | 1      |  |  |
| Late pregnancy assessment                                           | 1      |  |  |





#### The 7 Steps

- Recognition of the disorder
- Assessment of its severity
- Perioperative risk assessment
- Preoperative optimization of the patient
- Choice of anesthetic technique
- Choice of monitoring
- Treatment of decompensation

#### **Multidisciplinary Planning**

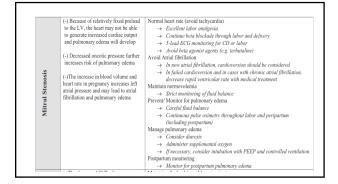
- Cardiologist
- Obstetrician/MFM
- Anesthesiologist
- Neonatologist
- Additional providers
- Consideration of intervention such as balloon valvuloplasty for MS/AS or medications for pulmonary hypertension

ELSEVIER

#### The 7 Steps

- · Recognition of the disorder
- · Assessment of its severity
- · Perioperative risk assessment
- · Preoperative optimization of the patient
- Choice of anesthetic technique (and of delivery)
- Choice of monitoring
- Treatment of decompensation

## International Journal of Obstetric Anesthesia (2019) 37, 73–85 0959-289X/\$ - see front matter © 2018 Elsevier Ltd. All rights reserved. https://doi.org/10.1016/j.ijoa.2018.09.011




Obstetric anesthesia management of the patient with cardiac disease

Check for

K.W. Arendt,<sup>a</sup> K.J. Lindley<sup>b</sup> <sup>a</sup>Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA <sup>c</sup>Cardionascular Division, John T. Miliken Department of Internal Medicine, Washington University School of Medicine S. Lawis MO, USA Medicine, St. Louis, MO, USA

ABSTRACT ADSTACL Cardiovascular disease is the leading cause of maternal mortality in much of the developed world. Risk stratification models can predict which patients are at greatest risk for maternal or fetal morbidity or mortality. Particular cardiac disease hold significant risk of mortality during measurement including submanual biotectaries, acytica measureme Joh subritationa coulous tract determines





#### **Key Points**

- Pregnancy not recommended in patients with pulmonary arterial hypertension, a systemic RV with decreased function, ٠ after Fontan operation, with dilated aorta, severe MS, or severely decreased LV ejection fraction
- Weight-based LMWH with anti-Xa monitoring rather than UFH
- WHO 2-3 or higher should be managed in specialized centers by a multidisciplinary team
- Induction of labor at 40 weeks
- Vaginal delivery recommended except for aggressive aortic pathology, acute intractable heart failure, severe pulmonary hypertension, or patients presenting in labor on oral anticoagulants

#### **Method of Delivery**

- Ruys, Heart 2015; 101:530
  - Analysis of ROPAC (Registry on Pregnancy and Cardiac Disease) registry
  - Compared planned vaginal delivery with planned Cesarean delivery
  - Similar perinatal mortality and Apgar scores
  - Planned section had decreased gestational age and birth weight
  - No difference in outcome with emergency vs. planned Cesarean

#### **Method of Delivery**

- Vaginal delivery in absence of obstetric indications
- "Cardiac vaginal delivery" – Avoids pushing

  - Requires forceps or vacuum-assisted delivery
- Cesarean delivery when pregnancy would have been contraindicated
  - -Severe aortopathy
  - -- ?Severe pulmonary hypertension

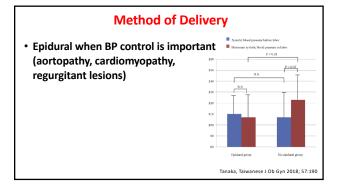
#### The 7 Steps to Success

- Recognition of the disorder
- Assessment of its severity
- Perioperative risk assessment
- Preoperative optimization of the patient
- Choice of anesthetic technique
- Choice of monitoring
- Treatment of decompensation

#### **Hemodynamic Goals**

- Preload
- Afterload (SVR)
- Blood pressure
- Contractility
- Heart rate
- Rhythm
- PVR
- Which are critical to the patient?
- Which are likely to change?

#### Interactions with Cardiovascular Disease


- Obstructive lesions (mitral stenosis, aortic stenosis, pulmonary hypertension)
   Increased flow results in increased gradient
- Tachycardia increases mitral gradient in MS
   Decreased proload results in decreased cardias
- Decreased preload results in decreased cardiac output Shunting lesions (VSD, complex congenital heart disease)
- Decreased SVR increases right-to-left shunt
- Increased SVR increases left-to-right shunt
   Aortopathy (Marfan syndrome, bicuspid aortic valve)
- Hypertension results in aortic dissection or rupture
- Cardiomyopathy
- Increased blood volume results in pulmonary edema
   High incidence of arrhythmias
- Need for increased cardiac output in pregnancy
- ACEIs, ARBs, and aldosterone antagonists require discontinuation

#### Monitoring

- 5-lead ECG
- NIBP ± arterial line
- Baseline TTE and availability if clinical change
- Fetal monitoring
- Consider CVP for drug administration and volume assessment
- Rarely PA catheter

#### **Labor Analgesia**

• Avoid painful labor: Increased HR, BP, CO, VO2



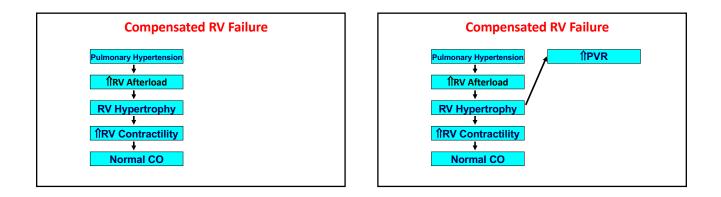
#### Labor Analgesia

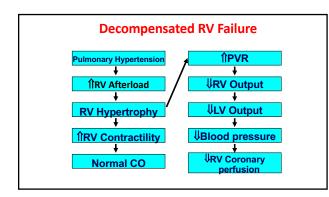
- Avoid painful labor: Increased HR, BP, CO, VO2 -Early analgesia
- -Perineal coverage in later stages
- Epidural
- CSE with intrathecal opioid only
- · LOR technique with no air in the syringe

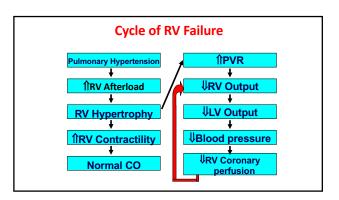
#### **Cesarean Delivery**

- Neuraxial anesthesia (SAB, epidural, CSE)
  - Decreased preload, decreased SVR
  - Avoid rapid changes in hemodynamics
    - Slow epidural
    - CSE with low dose intrathecal bupivacaine (2.5 5 mg) and sequential epidural boluses
- General anesthesia
  - General anestnesia
  - Sympathetic response to intubation
    - Consider lidocaine plus fentanyl or remifentanil
    - Etomidate in potentially unstable patient
    - Consider TEE monitoring

#### **Postpartum Period**


- Increased preload and afterload
- Requires ICU monitoring


#### **Drugs and Cardiovascular Disease**

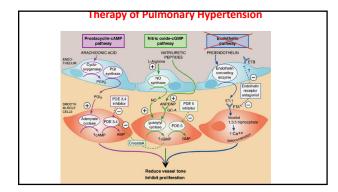

- Terbutaline and ritodrine:  $\uparrow inotropy/chronotropy, \downarrow SVR$
- Oxytocin: 个SVR
- PGF2-alpha: 个PVR
- Methylergonovine: Coronary vasospasm, 个PVR

#### **Pulmonary Hypertension**

- · One-third have a cardiac event
- 20% have a thromboembolic complication
- Half have premature delivery
- Increased fetal mortality
- Maternal mortality 25% but case series in specialized centers of 10-12%
- Neonatal mortality 1-4%; complications 18-30%








#### **Risk of Surgery in Patients with Pulmonary Hypertension**

 Depends on etiology of pulmonary hypertension, severity of pulmonary hypertension, and adequacy of compensatory mechanisms (RAP, CO, SvO<sub>2</sub>, RV function, functional status)

#### The 7 Steps

- Recognition of pulmonary hypertension
- Assessment of severity of pulmonary hypertension
- Perioperative risk assessment
- Preoperative optimization of the patient
- Choice of anesthetic technique
- Choice of monitoring
- Treatment of decompensated pulmonary hypertension



#### **Pulmonary Hypertension**

- Inhaled prostanoids
- Sildenafil
- Deliver at 34 weeks to avoid emergency situation -?Cesarean delivery to avoid prolonged labor

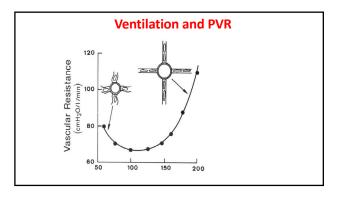
#### The 7 Steps

- Recognition of pulmonary hypertension
- · Assessment of severity of pulmonary hypertension
- Perioperative risk assessment
- Preoperative optimization of the patient
- Choice of anesthetic technique
- Choice of monitoring
- Treatment of decompensated pulmonary hypertension

#### **Hemodynamic Goals in PH**

- Maintain preload
- Maintain SVR (systemic afterload)
- Maintain contractility
- Maintain heart rate and sinus rhythm
- Avoid increased PVR

#### **Anesthetic Techniques**


- General anesthesia
  - ↓Preload, ↓afterload, ↓contractility
- Neuraxial blocks
  - $\downarrow$ Sympathetic tone,  $\downarrow$ preload,  $\downarrow$ afterload
- Regional anesthesia
  - Ideal for peripheral procedures and for postoperative pain

#### **Induction Techniques**

- Propofol: ↓preload, ↓afterload, ↓contractility
- Ketamine: **^**PVR
- Etomidate: Ideal agent

#### **Maintenance of Anesthesia**

- Nitrous oxide: **†**PVR
- High-dose narcotics: Hypercarbia with emergence
- Isoflurane/sevoflurane: ↓SVR
- Combined narcotic-volatile agent techniques work well
- Increasing role for dexmedetomidine - Avoid bradycardia



#### The 7 Steps

- Recognition of pulmonary hypertension
- · Assessment of severity of pulmonary hypertension
- Perioperative risk assessment
- Preoperative optimization of the patient
- Choice of anesthetic technique
- Choice of monitoring
- Treatment of decompensated pulmonary hypertension

#### **Intraoperative Monitoring**

- Arterial catheter
- Intraoperative TEE
- RV function, RV volume, LV volume
- Pulmonary artery catheter
  - Assess for progression of pulmonary hypertension
     Guide surgical and anesthetic decision making
  - Treatment of systemic hypotension
  - Not used for wedge pressure measurement
     Risk of pulmonary artery rupture

#### The 7 Steps

- Recognition of pulmonary hypertension
- · Assessment of severity of pulmonary hypertension
- Perioperative risk assessment
- Preoperative optimization of the patient
- Choice of anesthetic technique
- Choice of monitoring
- Treatment of decompensated pulmonary hypertension

#### **Treatment of RV Failure**

- Molloy, Am Rev Respir Dis 1984; 130:870
  - Right ventricular failure model in dogs due to pulmonary hypertension from pulmonary embolism
     Resuscitation with
  - - Volume: 0% survival
    - Isoproterenol: 0% survival
    - Norepinephrine: 100% survival

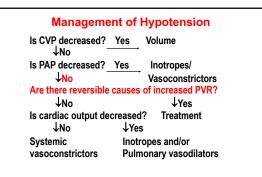
#### Hypotension and RV Decompensation

- RV ischemia
  - RV coronary flow normally in systole and diastole; in  $\approx$  pulmonary hypertension, only in diastole  $\frac{2}{3}$

  - Increased oxygen consumption
  - Cycle of ischemia and failure
- · Role of the interventricular septum - High LV pressure normally pushes the septum towards the RV free wall, producing RV ejection

| <b>Etiologies of Hypotension</b> |          |          |                             |  |
|----------------------------------|----------|----------|-----------------------------|--|
|                                  | CVP      | PAP      | со                          |  |
| Decreased<br>preload             | ¢↓       | Ļ        | Ļ                           |  |
| Decreased contractility          | 1        | t        | t                           |  |
| Decreased SVR                    | <b>→</b> | →        | $\uparrow$ or $\rightarrow$ |  |
| Increased PVR                    | 1        | <b>↑</b> | Ļ                           |  |

# **Management of Hypotension**


Is CVP decreased? Yes Volume ↓No Is PAP decreased? Yes Inotropes ↓No Are there reversible causes of increased PVR? ↓No ↓Yes Is cardiac output decreased? Treatment ↓Yes ↓No Inotropes and/or Systemic vasoconstrictors Pulmonary vasodilators

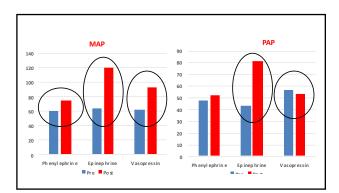
# Management of Hypotension

Is CVP decreased? Yes Volume ↓No Is PAP decreased? Yes Inotropes ↓No Are there reversible causes of increased PVR? ↓No ↓Yes Is cardiac output decreased? Treatment ↓Yes ↓No Systemic Inotropes and/or vasoconstrictors **Pulmonary vasodilators** 

#### **Management of Hypotension**

| Is CVP decreased?<br>↓No | Yes Volume               |
|--------------------------|--------------------------|
| Is PAP decreased?        | Yes Inotropes/           |
| ↓No                      | Vasoconstrictors         |
| Are there reversible     | causes of increased PVR? |
| ↓No                      | ↓Yes                     |
| Is cardiac output dec    | creased? Treatment       |
| ↓No                      | ↓Yes                     |
| Systemic                 | Inotropes and/or         |
| vasoconstrictors         | Pulmonary vasodilators   |




#### **Active Pulmonary Vasoconstriction**

- Hypoxia
- Hypercarbia
- Acidosis
- Sympathetic tone

#### **Management of Hypotension** Is CVP decreased? Yes Volume ↓No Is PAP decreased? Yes Inotropes/ ↓No Vasoconstrictors Are there reversible causes of increased PVR? ↓No ↓Yes Is cardiac output decreased? Treatment ↓No ↓Yes Systemic Inotropes and/or Pulmonary vasodilators vasoconstrictors

#### Vasopressors in Pulmonary Hypertension

- Siehr, Pediatr Crit Care Med 2016; 17:428
  - 15 pediatric patients with pulmonary hypertension undergoing elective cardiac catheterization with general anesthesia
  - Received
    - Phenylephrine 1 mcg/kg (n = 5)
    - Epinephrine 1 mcg/kg (n = 5)
    - Vasopressin 0.03 U/kg over 5 minutes (n = 5)
  - Hemodynamic measurements at peak systemic pressure



| S CVP decreased?     | Yes     | Volume              |
|----------------------|---------|---------------------|
| ↓No –                |         |                     |
| s PAP decreased?     | Yes     | Inotropes/          |
| ↓No <sup>–</sup>     | •       | Vasoconstrictors    |
| Are there reversible | causes  | of increased PVR?   |
| ↓No                  |         | ↓Yes                |
| s cardiac output de  | creased | ? Treatment         |
| ↓No                  | ↓Ye     | 3                   |
| Systemic             | Inotr   | opes and/or         |
| asoconstrictors      |         | nonary vasodilators |

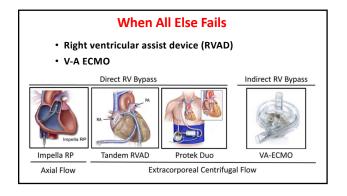
| Inovasodilators |         |                       |                        |
|-----------------|---------|-----------------------|------------------------|
|                 | Control | Milrinone<br>(1 hour) | Milrinone<br>(2 hours) |
| MPAP            | 34      | 28                    | 27                     |
| CI              | 2.6     | 2.8                   | 3.1                    |
| PVR             | 701     | 462                   | 379                    |
| MAP             | 78      | 75                    | 74                     |

Wang, Adv Ther 2009; 26:46

#### **MANAGEMENT OF HYPOTENSION**

Is CVP decreased? Yes Volume ↓No Is PAP decreased? Yes Inotropes ↓No Are there reversible causes of increased PVR? ↓No ↓Yes Is cardiac output decreased? Treatment ↓No ↓Yes Systemic Pulmonary vasodilators vasoconstrictors

#### MANAGEMENT OF HYPOTENSION


| ls CVP decreased?<br>↓No | Yes     | Volume              |
|--------------------------|---------|---------------------|
| Is PAP decreased?        | Yes     | Inotropes/          |
| ↓No                      |         | Vasoconstrictors    |
| Are there reversible     | causes  | of increased PVR?   |
| ↓No                      |         | ↓Yes                |
| Is cardiac output de     | creased | d? Treatment        |
| ↓No                      | ↓Ye     | S                   |
| Systemic                 | Pull    | nonary vasodilators |
| vasoconstrictors         | Inh     | aled                |

#### **Inhaled Vasodilators**

- Nitric oxide
- Epoprostenol (Flolan, Veletri)

#### **Postoperative Management**

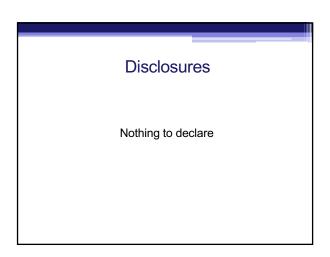
- Most challenging aspect of the case
- Emergence issues
- Dexmedetomidine
- Post-delivery pulmonary hypertensive crisis due to hormonal vasoconstriction
- ICU monitoring
- Continue chronic pulmonary vasodilator therapy throughout the perioperative period

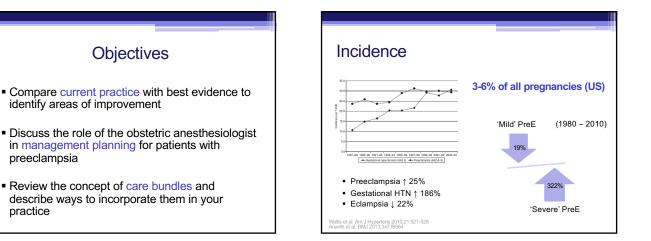


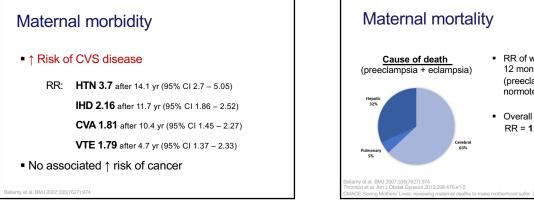
#### The 7 Steps to Success

- Recognition of the disorder
- Assessment of its severity
- Perioperative risk assessment
- Preoperative optimization of the patient
- Choice of anesthetic technique
- Choice of monitoring
- Treatment of decompensation
- Call a friend: Rpearl@Stanford.edu




# The Latest on Preeclampsia Management and Care Bundles

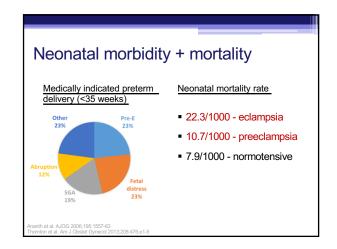

Dr Gillian Abir, MBChB, FRCA


**Clinical Associate Professor** 

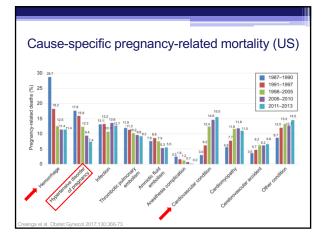
Department of Anesthesiology, Perioperative and Pain Medicine



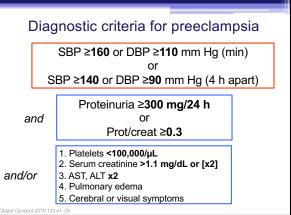








### RR of women dying within 12 months of delivery (preeclampsia/eclampsia vs. normotensive) = 5.1

Overall mortality RR = 1.49 after 14.5 yr

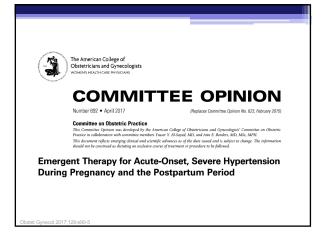

| Seizure occu                      | rrence |                                              |
|-----------------------------------|--------|----------------------------------------------|
| <ul> <li>Antepartum</li> </ul>    | 25.1%  |                                              |
| <ul> <li>During labor</li> </ul>  | 44.1%  |                                              |
| <ul> <li>Postpartum</li> </ul>    | 26.3%  | Median PP day = <b>day 4</b><br>(range 1-55) |
| <ul> <li>Not specified</li> </ul> | 4.5%   |                                              |

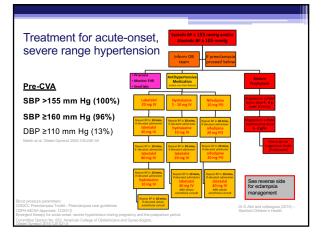


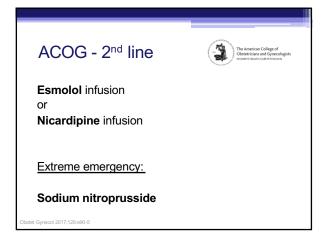


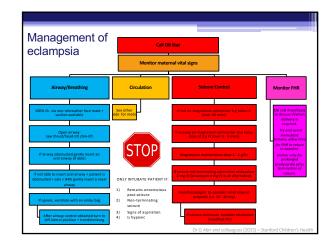






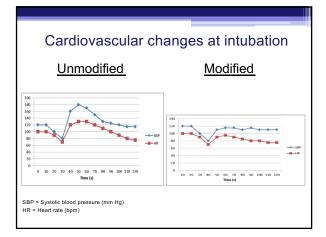


# Objectives

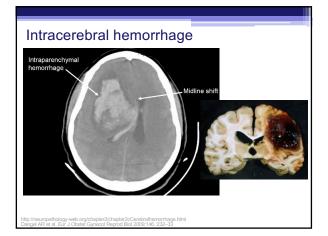

- Compare current practice with best evidence to identify areas of improvement
- Discuss the role of the obstetric anesthesiologist in management planning for patients with preeclampsia
- Review the concept of care bundles and describe ways to incorporate them in your practice


# How we can help

- Anesthetic risk assessment
- Blood pressure control
- Fluid management
- Eclampsia prophylaxis
- Analgesia + anesthesia planning







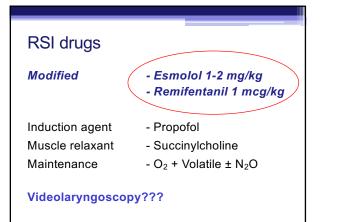

# **RSI** modification - Indications

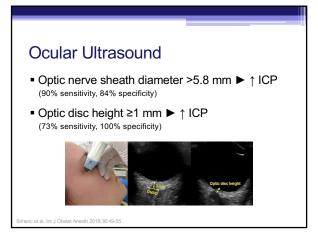
- Preeclampsia
- Eclampsia
- Increased intracranial pressure:
  - Tumor Head injury
  - Hemorrhage Meningoencephalitis
  - Hydrocephalus Cerebral edema
  - Status epilepticus PRES



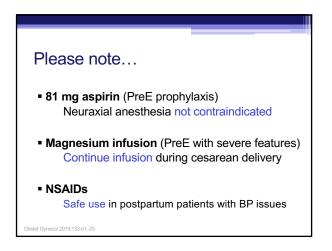


#### FOCUSED REVIEWS IN OBSTETRIC ANESTHESIA


#### Prevention of Peri-Induction Hypertension in Preeclamptic Patients: A Focused Review


Melissa Pant, MD, Robert Fong, MD, and Barbara Scavone, MD

"It may be that a **combination of drugs** from different classes, along with a patient-specific dose of induction drug, **leads to optimal hemodynamic stability.** 


Given their favorable pharmacologic profiles, wide availability, and predictability with few reports of serious maternal or fetal effects, esmolol 1.5 mg/kg or NTG 2 mcg/kg, combined with propofol 2 mg/kg, is used by the authors of this review, depending on maternal hemodynamic variables at the time of anesthesia induction."

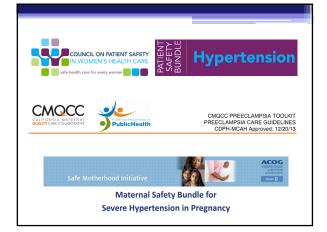
et al. Anesth Analo 2014:119:1350-6





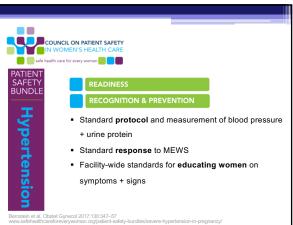
| Preecla<br>control    |                                        | th sev            | ere featu                        | ires vs.          |
|-----------------------|----------------------------------------|-------------------|----------------------------------|-------------------|
|                       | Optic nerve sheath<br>diameter ≥5.8 mm |                   | Optic disc height >1 mm          |                   |
|                       | Severe<br>preeclampsia<br>(n=30)       | Control<br>(n=30) | Severe<br>preeclampsia<br>(n=30) | Control<br>(n=30) |
| Antepartum            | 13 (43%)*                              | 0                 | 23 (77%)*                        | 0                 |
| Day 1<br>postpartum   | 13 (43%)*                              | 0                 | 23 (77%)*                        | 0                 |
| Day 4<br>postpartum   | 3 (10%)*                               | 0                 | 6 (20%) <sup>†</sup>             | 0                 |
| * P<0.001<br>† P=0.66 |                                        |                   |                                  |                   |



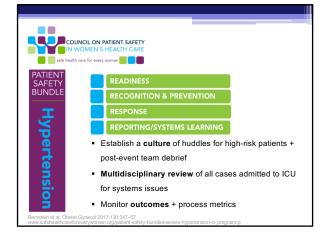

# Objectives Compare current practice with best evidence to identify areas of improvement Discuss the role of the obstetric anesthesiologist in management planning for patients with preeclampsia

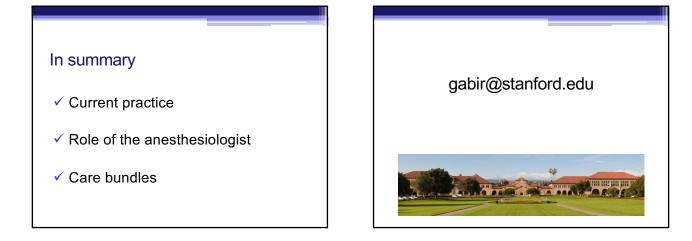
 Review the concept of care bundles and describe ways to incorporate them in your practice

# Care Bundles


"A patient safety bundle is a set of evidence-based guidelines, to be adapted for local circumstances, to optimally manage a medical condition and thus improve patient outcomes."

ernstein et al. Obstet Gynecol 2017;130:347–57





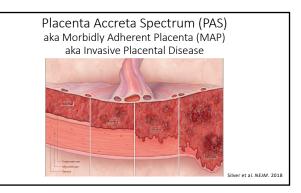


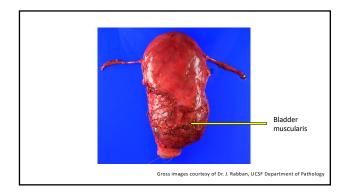






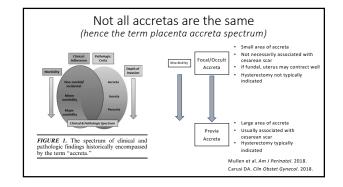

53


# Anesthetic Management of Invasive Placental Disease

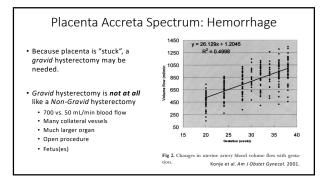

John C. Markley, MD, PhD Department of Anesthesia and Perioperative Care University of California San Francisco Director of Obstetric Anesthesia, Zuckerberg San Fran

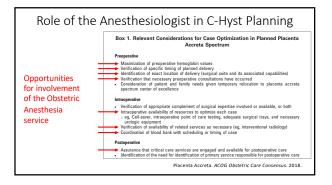



No Financial Disclosures

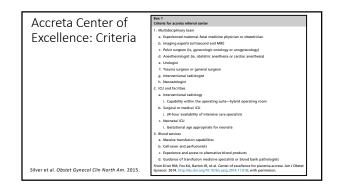

This presentation will address off-label use of medications

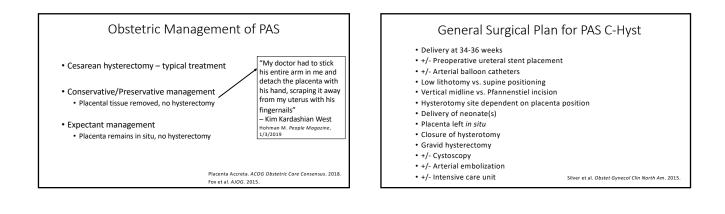


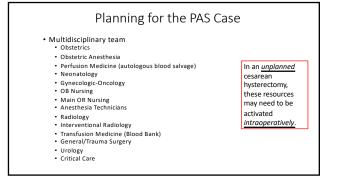


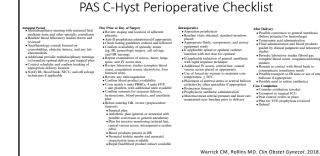



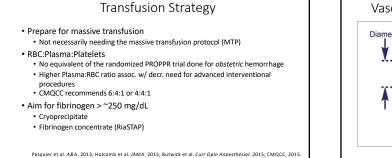

. .

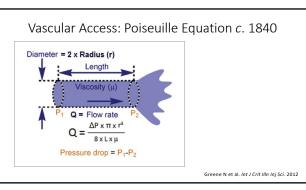




| Table 4. Placenta Previa                                                                                                                                  | and Placenta Accreta by        | Number of Cesarean E                    | Deliveries                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|--------------------------------------------|
| Cesarean Delivery                                                                                                                                         | Previa                         | Previa*:Accreta <sup>†</sup><br>[n (%)] | No Previa <sup>‡</sup> :Accreta<br>[n (%)] |
| First <sup>8</sup>                                                                                                                                        | 398                            | 13 (3.3)                                | 2 (0.03)                                   |
| Second                                                                                                                                                    | 211                            | 23 (11)                                 | 26 (0.2)                                   |
| Third                                                                                                                                                     | 72                             | 29 (40)                                 | 7 (0.1)                                    |
| Fourth                                                                                                                                                    | 33                             | 20 (61)                                 | 11 (0.8)                                   |
| Fifth                                                                                                                                                     | 6                              | 4 (67)                                  | 2 (0.8)                                    |
| $\geq 6$                                                                                                                                                  | 3                              | 2 (67)                                  | 4 (4.7)                                    |
| <ul> <li>Percentage of accreta in wom</li> <li>Increased risk with increasing</li> <li>Percentage of accreta in wom</li> <li>Primary cesarean.</li> </ul> | number of cesarean deliveries; | P < .001.                               |                                            |



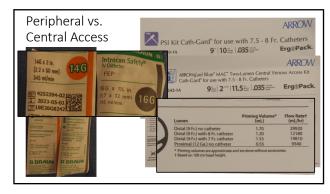





| based o             | n imaging or   | n with suspected<br>by clinical acum<br>able experience | en should be de                                                                                                               | livered at a leve                                                                                                                                  | el III or IV                                                                                                                                       |
|---------------------|----------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| -                   | - Grade 1B; St | rong recommen                                           | dation, modera<br>Level of Maternal Care                                                                                      | te-quality evide                                                                                                                                   | ence.                                                                                                                                              |
| Required<br>Service | Birth Centers  | Level I                                                 | Level II                                                                                                                      | Level III                                                                                                                                          | Level IV                                                                                                                                           |
| Anesthesia          |                | Anesthesia services<br>available                        | Anesthesia services<br>available at all times                                                                                 | Anesthesia services<br>available at all times                                                                                                      | Anesthesia services<br>available at all times                                                                                                      |
|                     |                |                                                         | Board-certified<br>anesthesiologist<br>with special training<br>or experience in<br>obstetrics, available<br>for consultation | Board-certified<br>anesthesiologist<br>with special training<br>or experience in<br>obstetrics is in charge<br>of obstetric anesthesia<br>services | Board-certified<br>anesthesiologist<br>with special training<br>or experience in<br>obstetrics is in charge<br>of obstetric anesthesia<br>services |



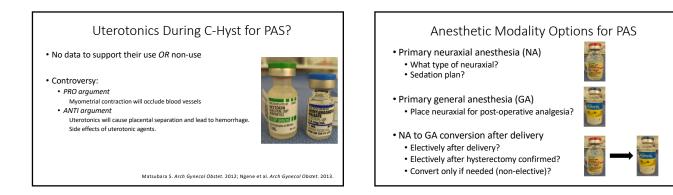




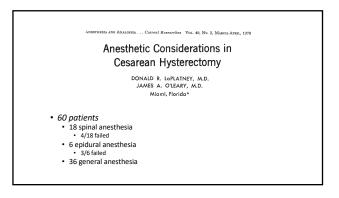






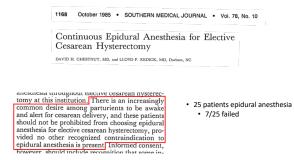


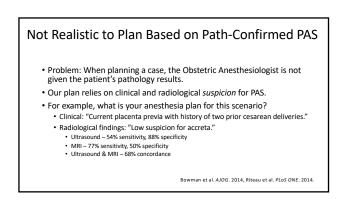


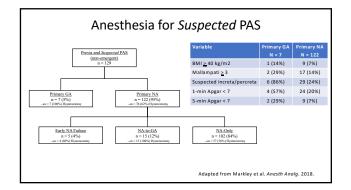

| <ul> <li>Belmont rapid<br/>infuser</li> </ul> | Catheter                          | Flow<br>(ml/min) | Pressure<br>(mmHg) |
|-----------------------------------------------|-----------------------------------|------------------|--------------------|
| <ul> <li>maximum rate</li> </ul>              | Braun Introcan 18G                | 231              | 300                |
| 1000 mL/min                                   | Braun Introcan 16G                | 458              | 300                |
| <ul> <li>pressure</li> </ul>                  | Braun Introcan 14G                | 698              | 300                |
| limiter set to                                | Arrow Two-lumen 14G Distal Port   | 255              | 300                |
| 300 mm Hg                                     | Arrow Two-lumen 14G Proximal Port | 205              | 300                |
| <ul> <li>extension<br/>tubing</li> </ul>      | Bard Trialysis 12G Distal Port    | 799              | 300                |
| attached                                      | Bard Trialysis 12G Proximal Port  | 765              | 300                |
| Massive                                       | Arrow 7 Fr RIC                    | 1000             | 287                |
| Transfusion                                   | Arrow 9 Fr PSI Kit                | 1000             | 287                |
| Products                                      | Arrow 9 Fr MAC                    | 1000             | 264                |
| (PRBC:FFP 1:1)                                | Control (No catheter)             | 1000             | 217                |



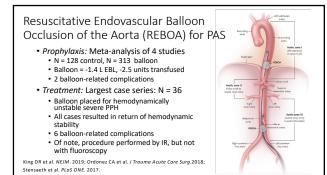

|                                             | Comparison of A                                                                                                                                                              | nesthesia Modalities                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anesthetic<br>Modality                      | Pros                                                                                                                                                                         | Cons                                                                                                                                                                                                                                                                                                                                          |
| Neuraxial<br>anesthesia<br>(NA)             | <ul> <li>Patient awake</li> <li>Bonding/Dreastfeeding possible</li> <li>Lower incidence of Apgar &lt;7</li> <li>Possibly lower EBL</li> <li>Reduced ICU admission</li> </ul> | Possible need for emergent conversion to GA     inferior operative conditions     intraoperative N/V     Possible need for supplemental sedation     Sympathectomy     Neuraxial in the setting of potential coagulopathy                                                                                                                     |
| General<br>Anesthesia<br>(GA)               | Airway secured     Controlled ventilation     Superior operative conditions                                                                                                  | Need to manipulate maternal airway     Fetal apposute to GA     Inferior post-op pain control/Higher incidence of chronic pain     Negative effect on bonding/breastleeding     PONV     Higher Incidence of Apgar <7     Possibly higher EBL     If no PAS found at surgery, patient received GA unnecessarily     Higher I/G admission rate |
| NA-to-GA<br>conversion<br>after<br>delivery | Reduced fetal exposure to anesthetics     Patient can see/bond with neonate     Airway secured during resuscitation                                                          | <ul> <li>Need for airway securement at a non-ideal time</li> <li>Neuraxial sympathectomy + GA induction at onset of<br/>hemodynamic instability</li> </ul>                                                                                                                                                                                    |
|                                             | Warrick CM, Rollins N                                                                                                                                                        | 1D. Clin Obstet Gynecol. 2018; Markley et al. Anesth Analg. 20                                                                                                                                                                                                                                                                                |




Carcinoma in Situ of the Cervix in Pregnancy: Treatment with Primary Cesarean Hysterectomy DAVID L. BARCLAY, M. D., DAVID M. FRUEH, M. D., AND BYRON L. HAWKS, M. D. Department of Obsterics and Expectingly. University of Anamas for Medical Sciences, Line Rock, Arkanss 72201 Received May 10, 1977 • 32 patients • No failure rate mentioned 1497, and 2 onnes of whole oncour were prepared. On the monthing of sangery, some patients received atropine as a drying agent, and spinal anesthesia was administered unless contraindicated. A vertical skin incision has been used in all of our


natients: however, a low transverse incision is accentable. In all natients, the

GYNECOLOGIC ONCOLOGY 5, 357-362 (1977)




| itudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Туре          | N  | %      | %  | %       | %        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|--------|----|---------|----------|
| , and the second s |               |    | C-Hyst | GA | NA-only | NA-to-GA |
| Lilker et al. IJOA, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Retrospective | 23 | 48     | 26 | 52      | 22       |
| Kocaoglu et al. Ginekol Pol, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Retrospective | 28 | 61     | 86 | 7       | 7        |
| Nguyen-Lu et al. Can J Anesth, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Retrospective | 50 | 72     | 12 | 62      | 26       |
| Taylor et al. IJOA, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Retrospective | 40 | 60     | 5  | 53      | 43       |
| Markley et al. Anesth Analg, 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Retrospective | 81 | 93     | 9  | 68      | 23       |
| Riveros-Perez et al. Int J Gynaecol Obstet, 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Retrospective | 43 | 91     | 9  | 21      | 70       |





#### PAS C-Hyst: NA-Only vs. NA-to-GA NA-Only N = 57 > 4 U PRBC 14 (25%) 9 (60%) .01 A to GA Total products, U 2 (0-28) 8 (0-34) 0.03 Surgical duration, h 2.6 (1.0-5.6) 4.0 (2.0-6.3) <.01 erative Acuity\* 2 (4%) 7 (47%) <.001 Pathologic diagnosis .10 delivery; GA, genera PRBC\_packed\_rec CD, OR No invasion 4 (7%) 0 (0%) Accreta 16 (29%) 1 (7%) Increta 20 (36%) 5 (33%) 16 (29%) 9 (60%) Percreta Data shown as n (%) or median (range). \* Need for ICU admission, arterial embolization, reoperation, or post-op transfusion of ≥ 3 U PRBC. Markley et al. Anesth Analg. 2018.



#### Conclusions

- ACOG strongly recommends that patients with suspected PAS be delivered at a Level III or IV Maternal Care institution
- The multi-disciplinary team approach is essential for successful outcomes
  No prospective trials exist comparing anesthesia modalities for cesarean
- delivery for PASPrimary neuraxial anesthesia may have advantages over primary general anesthesia including reduced fetal exposure to anesthetics
- Starting with neuraxial anesthesia may prevent the unnecessary general anesthetics in cases of false positive PAS or when a c-hyst was not performed
- It may be reasonable to reserve primary general anesthesia for patients with risk factors for difficult airway or increased surgical complexity.



# Friday, March 15, 2019

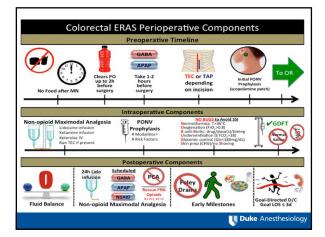
# Session III: Enhanced Recovery and Cesarean Anesthesia

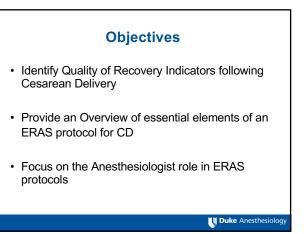
Moderator: Brendan Carvalho, M.B., B.Ch., FRCA

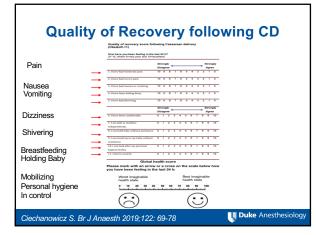
**Recommended ERAS Protocols for Cesarean Delivery** Ashraf S. Habib, M.B., B.Ch., M.Sc., M.S.N., FRCA

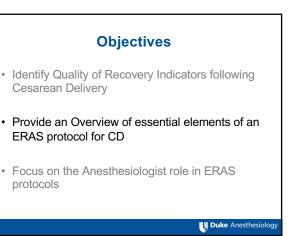
Setting up and Evaluation of a Successful ERAS Pathway for Cesarean Delivery *Eric J. Hunt, M.D., Ph.D.* 

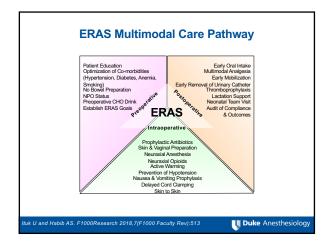
**Regional Blocks for Cesarean Delivery Analgesia: TAP, QL and Beyond** *Pedram Aleshi, M.D.* 

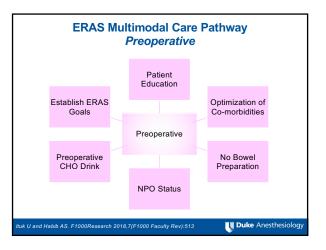




# **Duke** Anesthesiology

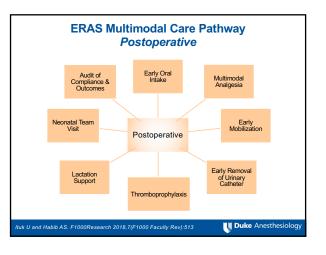

#### Recommended ERAS Protocols for Cesarean Delivery

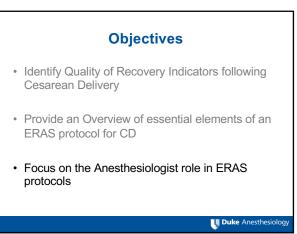

Ashraf S Habib, MBBCh, MSc, MHSc, FRCA Professor of Anesthesiology Professor in Obstetrics and Gynecology Chief, Division of Women's Anesthesia

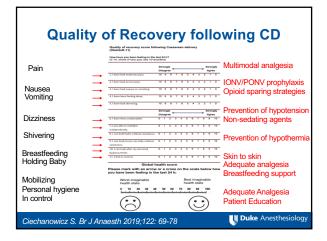


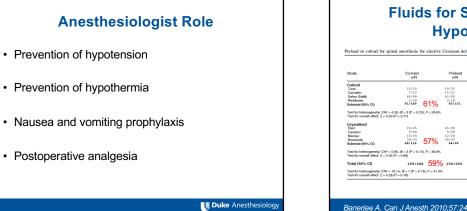





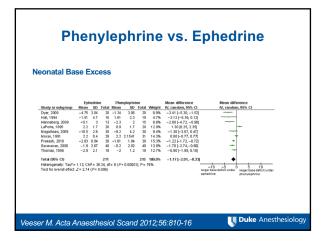



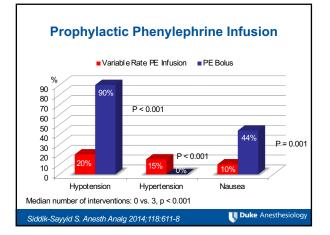


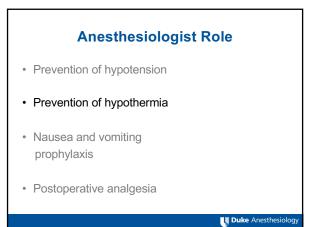


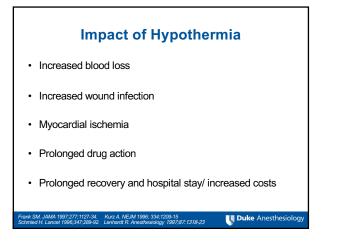


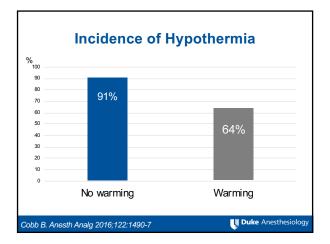


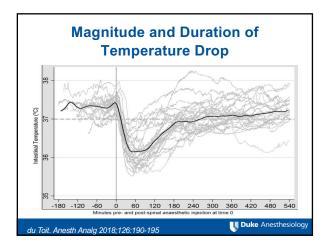


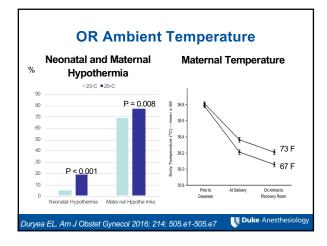



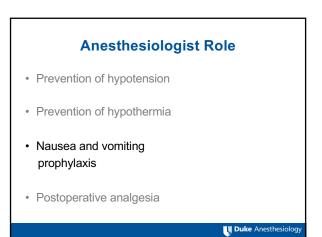



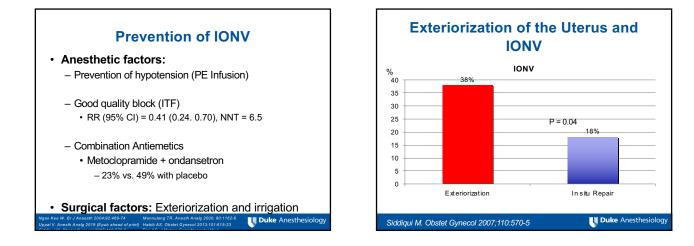


| IONV with | Ephedrine vs. |
|-----------|---------------|
| Pheny     | /lephrine     |

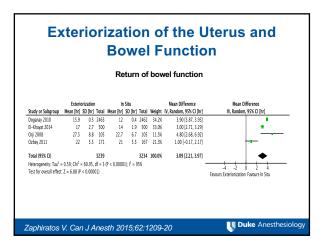

| Study                                                                          | Method   | Ephedrine                                                    | Phenylephrine        |
|--------------------------------------------------------------------------------|----------|--------------------------------------------------------------|----------------------|
| Ngan Kee 2008                                                                  | Bolus    | 13%                                                          | 0%                   |
| Prakash 2010                                                                   | Bolus    | 13%                                                          | 4%                   |
| Ngan Kee 2009                                                                  | Infusion | 35%                                                          | 2%                   |
| Ngan Kee 2008                                                                  | Infusion | 40%                                                          | 0%                   |
| Cooper 2002                                                                    | Infusion | 66%                                                          | 17%                  |
|                                                                                |          |                                                              |                      |
| n Kee WD. Anaesthesia 2008;63:1319-26<br>n Kee WD. Anesthesialogy 2009;111:506 |          | bstet Anesth 2010;19:24-30<br>Anesth Analg 2008;107:1295-302 | Ul Duke Anesthesiolo |

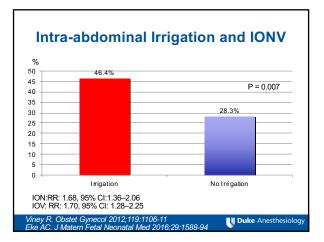


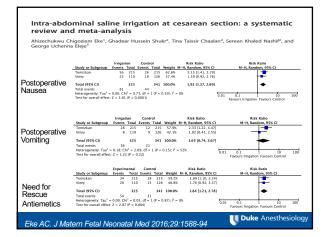


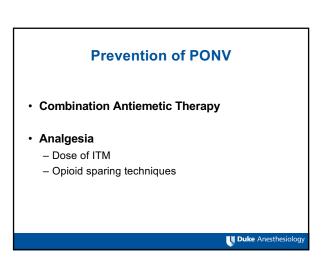



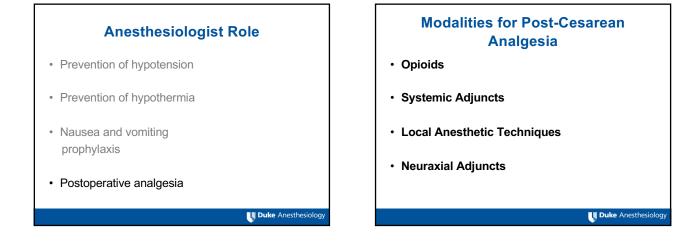



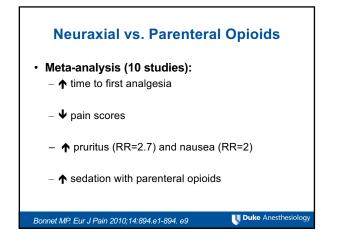



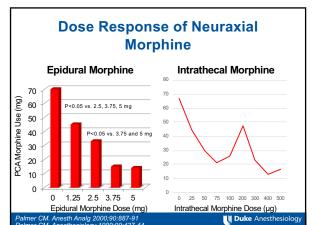


| Active Wa                             | rming                      |
|---------------------------------------|----------------------------|
| Outcome (n studies)                   | MD, RR or SMD<br>(95% CI)  |
| End of surgery temperature (10)       | 0.43 (0.27, 0.59)          |
| Shivering (12)                        | 0.58 (0.43, 0.79)          |
| Thermal Comfort (4)                   | 0.90 (0.36, 1.45)          |
| Hypothermia (5)                       | 0.66 (0.50, 0.87)          |
| Umbilical artery pH (3)               | 0.02 (0.00, 0.05)          |
|                                       |                            |
| ultan P. Br J Anaesth 2015;115:500-10 | <b>Duke</b> Anesthesiology |
| ultan P. Br J Anaesth 2015;115:500-10 | <b>Duke</b> Anesthesiolo   |

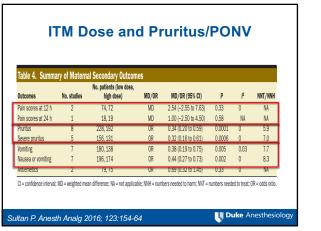


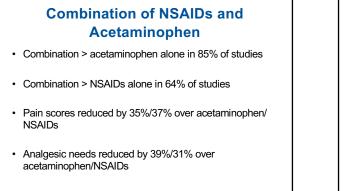





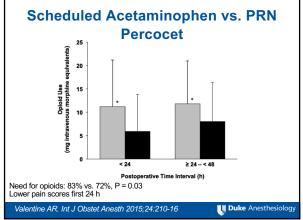


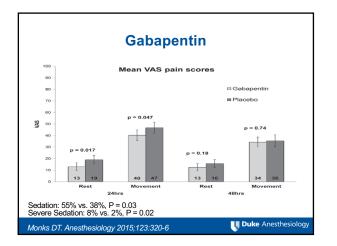


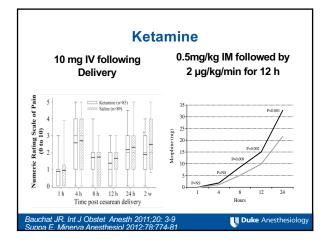



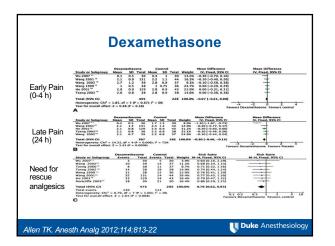



# Modalities for Post-Cesarean Analgesia


- Opioids
- Systemic Adjuncts
- Local Anaesthetic Techniques
- Neuraxial Adjuncts


1

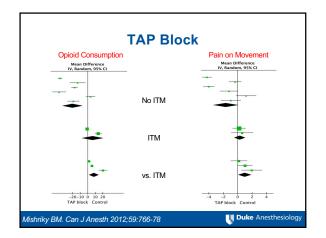


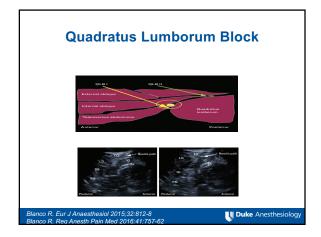


Duke Anesthesiol

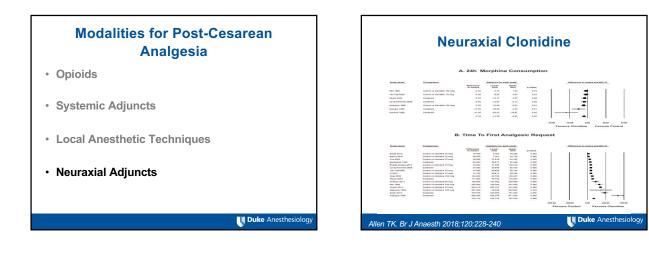
Ong CKS. Anesth Analg 2010;10:1170-9

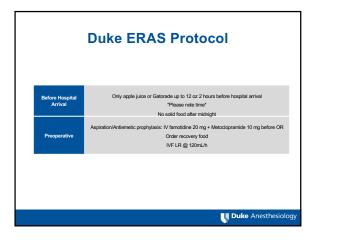


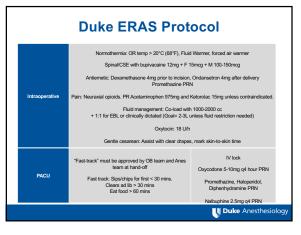






# Modalities for Post-Cesarean Analgesia


- Opioids
- Systemic Adjuncts
- Local Anesthetic Techniques
- Neuraxial Adjuncts


U Duke Anesthesiology











ł

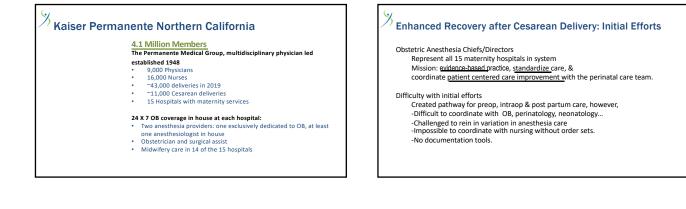
| itinue IV | Ketorolac 15mg for 24 hours -> Ibuprofen 600mg q6h and Discontinue IV<br>Acetaminophen 975mg q6 hours |                                |
|-----------|-------------------------------------------------------------------------------------------------------|--------------------------------|
|           |                                                                                                       |                                |
|           |                                                                                                       |                                |
|           | Oxycodone 5-10mg q4 PRN breakthrough                                                                  | Destar                         |
|           | Ondansetron 4mg PRN                                                                                   | Postop                         |
|           | Nalbuphine 2.5mg g4 PRN                                                                               |                                |
|           | Remove Foley at 6 h                                                                                   |                                |
|           | Consider: Epidural for postoperative analgesia                                                        |                                |
|           | TAP Block                                                                                             |                                |
|           | Neuraxial Clonidine                                                                                   |                                |
|           | Gabapentin                                                                                            | Parturient                     |
|           | Ketamine                                                                                              |                                |
|           | 15 tablets oxycodone 5 mg                                                                             | Post-discharge Opioids         |
|           | Neuravial Condine<br>Gabapentin<br>Ketamine                                                           | Opioid Dependent<br>Parturient |



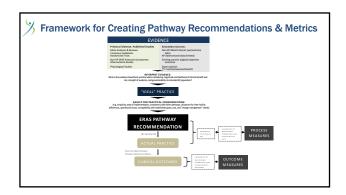
Extraordinary Care – Through a Culture of Innovation

SOAP 2019 Sol Shnider, M.D. Obstetric Anesthesia Meeting Friday, March 15, 2019

# Setting Up & Evaluation of a Successful ERAS Pathway for Cesarean Delivery


Eric J Hunt, MD, PhD Chair Obstetric Anesthesia Permanente Medical Group Kaiser Northern California


DISCLOSURE: I have no financial relationships with commercial support to disclose.


#### Learning Objectives

At the conclusion of this activity, participants should be able to:

- Recognize how implementing an ERAS pathway for cesarean delivery requires multidisciplinary coordination between anesthesia, obstetrics, neonatology, perinatology, and nursing.
- 2. Appreciate the importance of developing documentation that tracks adoption of pathway steps and results.
- 3. Understand the effect of an ERAS pathway for cesarean delivery on opioids usage.







#### **ERAS for Cesarean Delivery Recourses**

Х

Increasingly robust literature regarding ERAS in general, as well as ERAS for Cesarean delivery. Anesthesia literature Obstetric literature Perioperative Surgical Home for Cesarean Delivery



#### Recommended ERAS protocols for Cesarean delivery

Excellent resource on Cesarean ERAS with additional details regarding anesthetic considerations.

#### Developing a Cesarean ERAS Pathway Develop your ERAS pathway from literature reviews and expert opinion. Reviews describe many dimensions of enhanced recovery goals that have

 ERAS for cesarean delivery must engage the continuum of care
 Preconception outreach with comorbidity mitigation including weight management,
 Antepartum care involving education, diet, exercise, diabetes management
 Intrapartum care including the anesthetic
 Postpartum inpatient &

outpatient care

#### Multidisciplinary perinatal team develops ERAS consensus.

Obstetrician and anesthesia leaders and hospital administration align Obstetrician Midwife L&D nursing PACU nursing Postpartum nursing Anesthesia Pediatrics Neonatology and perinatology

# <sup>3</sup> Tracking ERAS implementation

Engage IT early in the process

Track implementation using the electronic medical record (EMR)

Process measures

Outcome measures

- Define discrete data fields,
  - nurse documentation, and
  - anesthesia if record is part of the EMR
  - Pharmacy (MAR)
- Coding associated with delivery including elective vs non-elective

# Nursing Documentation Challenges IT can develop as many new discrete data fields as your Cesarean ERAS team requests. However, smart IT design is essential for success. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example, a single nursing documentation required opening eight windows. In this example. In this example.<

#### Invest in Cesarean ERAS education

#### Change is not easy.

Enhanced recovery requires the perinatal team to adopt new protocols and procedures to support the new pathway.

ERAS "champions" socialize the concept then introduce specific ERAS elements.

- Presentations to perinatal staff
- Nurse education time
  - Department wide presentations with expectations for each team

#### Overcoming resistance to Cesarean ERAS

Overcoming resistance of anesthesia providers "I trained with Sol Shnider, and when I trained, we did it ..."

Counter by presenting cesarean ERAS anesthesia protocols in the context of Evidenced based medicine

Improved care experience Opioid sparing

and

Sol Shnider, Gertie Marx, Gerald Ostheimer...practiced, and taught, cutting-edge evidence-based anesthesia, not decades behind the time.

#### Align Cesarean Order-sets to Support ERAS

ERAS requires new protocols, supported by updated order-sets Multimodal analgesia (MMA) is a cornerstone of ERAS

Supported by orders that assure around the clock dosing Prevent accidental overdosing

Anesthesia orders must align with obstetrician orders Preop

PACU orders for MMA, PRN opioids, diet Anesthesia neuraxial opioid orders with MMA and PRN non-combined PO opioids

#### Potentially Controversial Cesarean ERAS protocols

Additional time may be required to get agreement on protocol involving: Carbohydrate drink  $% \left( {{{\rm{C}}_{\rm{T}}}} \right)$ 

Skin-to-skin in operating room

 $\mathbb{X}$ 

Active warming throughout delivery

Evidence based Pitocin dosing

Evidence based neuraxial opioid dosing

Avoiding exteriorization of the uterus

Pressor infusion to maintain maternal blood pressure

Avoiding prescription of PRN PO opioids with analgesia additives, eg

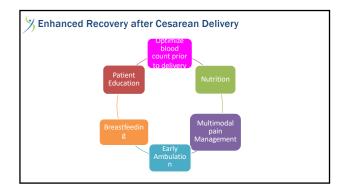
prescribe oxycodone rather than oxycodone combined with acetaminophen

#### Data not tracked by process or outcome measure requires chart audits to verify compliance with protocol

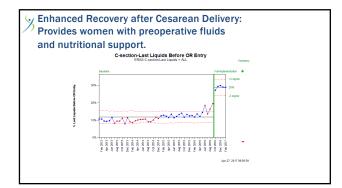
If the anesthesia record is not integrated into the EMR, check

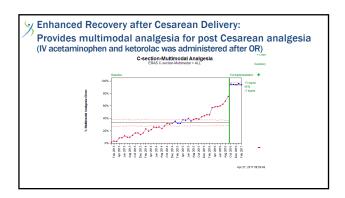
Opioid dosing

Pitocin dosing

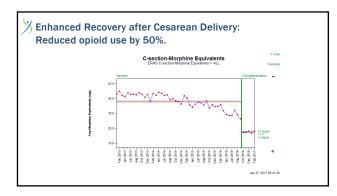

Pressor infusion

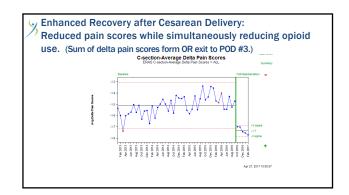
Verify that acetaminophen and NSAID are not being administered in both the OR and PACU

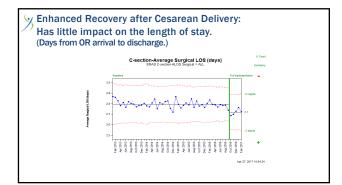


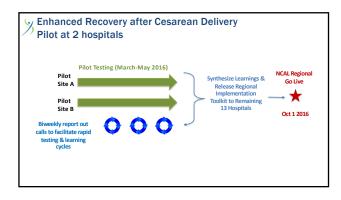



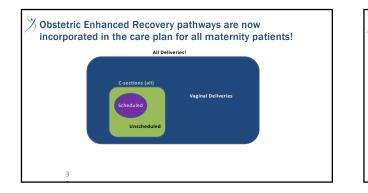













### Steps to set-up & evaluate ERAS for Cesarean delivery

- 1. Ally with obstetric leaders.
- Develop support from medical group and hospital administration.
   Form a multidisciplinary group of nursing, obstetrics, neonatology, perinatology, and anesthesia to develop agreement on ERAS steps.
- 4. Harness the electronic medical record to track process and outcome measures.
- 5. Invest in your staff through education, feedback and reinforcement.
- 6. Follow your measures to continuously improve care and prevent drift.
- 7. Celebrate your results with patients, staff and your administrative sponsors.



SSOCIATE CLINICAL PROFESSOR

AP SOL SHNIDER MEETING, MARCH 2019

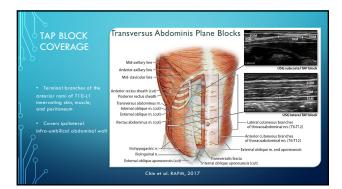




### CONSEQUENCES OF PERSISTENT PAIN

- Chronic pain/opioid tolerance, dependence and addicti
- Societal costs of opioid pr
- Depression/anxiety
- Disability/impaired quality of life
- Impaired maternal-neonatal bonding, decreased breast feeding




### WHEN TO USE REGIONAL ANESTHESIA

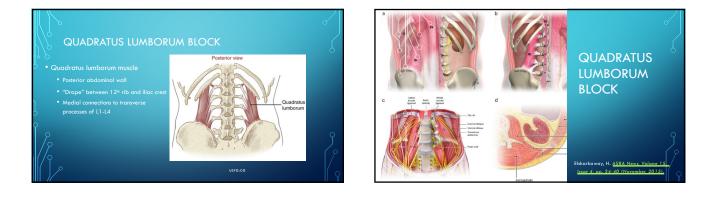
- Absence of neuraxial block
- Cesarean under GA without neuraxial acce
- .....
- Chronic pain
- Onioid dependent /tol
- High pain levels despite use of neuraxial opioids

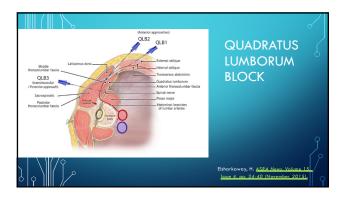
### 9

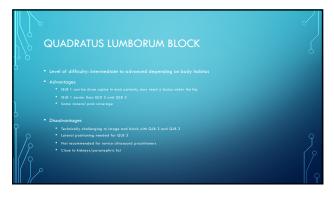
- REGIONAL ANESTHESIA OPTIONS
- Transversus abdominis plane block (TAP)
- Quadratus lumborum block (QL)
- Erector spinge block (ESP)

### COVERED FOR EACH BLOCK Level of difficulty Advantages/disadvantages Area of coverage Scanning technique What to inject Tips and trouble shooting





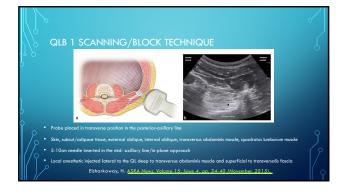


### TAP INJECT


- Typically 20-40ml, 0.25-0.5% bupivacaine or ropivacaine bil
- Larger volume helps spread of local anesthetic
- May need to use lower concentrations to keep total dose acceptable in smaller patients
- Liposomal bupivacaine is now FDA approved for TAP blocks (cost v. benefit)
- Can only combine liposomal bupivacaine with isotonic solutions and
   bupivacaine

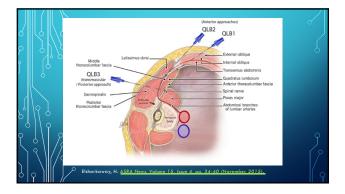
### | ° ∖° TAI

- TIPS AND TROUBLE SHOOTING
- As probe is moved posteriorly, transversus abdominis muscle ends into transversalis fascia (3 muscle layers to 2 muscle layers)
- The nerves travel deep to the fascial plane between the internal oblique and transversus abdominis muscle (when in doubt, inject into TAM rather than IOM)
- T6-T9 nerves enter the plane more medially, so TAP will not reliably cover above the umbilicus. (Subcostal TAP can cover above the umbilicus, or QL block)









### O QL BLOCK

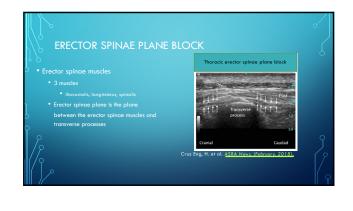

- T6-L1 skin incisions
- Abdominal wall and viscera
- Works though connection of thoracolumbar fascia into the paravertebral space
- More dermatomal coverage compared to TAP block with same volume of injectate

Elsharkaway, H. ASRA News, Volume 15, Issue 4, pp. 34-40 (November, 2015)









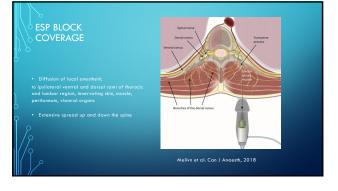



- Typically 20-40ml, 0.25-0.5% bupivacaine or ropivacaine bilaterally
- May need to use lower concentrations to keep total dose acceptable in smaller patients

### QUADRATUS LUMBORUM

- For QL1 block, avoid injecting into retroperitoneal space/perinephric fat, injectate is placed superficial to the transversalis fascia
- For QL2 block, it's important to inject between QL and erector spinae muscles
- For QL3 block, injection must be done deep to the QL muscle, between QL muscle and the psoas muscle. Injection into the psoas muscle can block the lumbar plexus and cause more significant lower extremity weakness.
- There is conflicting evidence if QL blocks cause lower extremity weakness




### RECTOR SPINAE PLANE BLOCK

Level of difficulty: Intermedic

Extensive cephalad and caudad coverage
 Bones are easy to visualize on ultrasound

Disadvantages • Patient positioning (lateral, sitting or prone) • Needle visualization may be hard • Single shot injection does not last very long







### ESP BLOCK

TIPS AND TROUBLE SHOOTING

Make sure the needle is touching the bone when injecting

 If you encounter high pressure, you may not be fully under the erector spina muscles, can walk cephalad or caudad on the transverse process

 In some patients, it's hard to detect a level but they are usually pretty comfortable

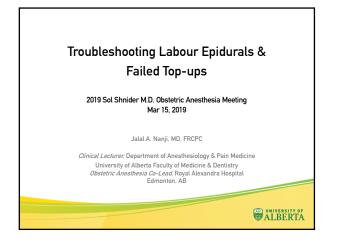


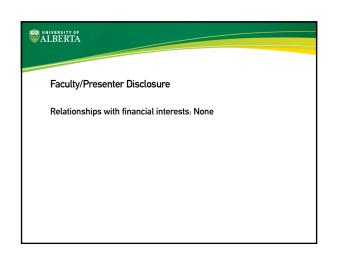
GOLD STANDARD FOR POST-CESAREAN ANALGESIA IS NEURAXIAL OPIOIDS

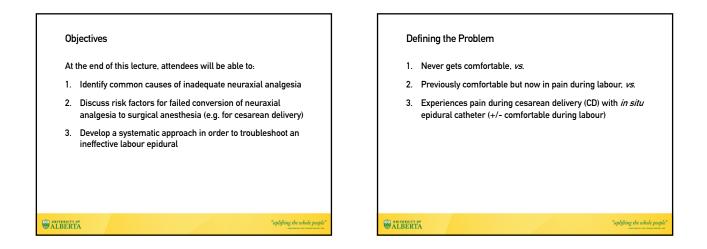
TRANSVERSUS ABDOMINIS PLANE BLOCK
 QUADRATUS LUMBORUM BLOCK






### Friday, March 15, 2019


### **Session IV: Tips and Techniques** Moderator: Pamela D. Flood, M.D., M.A.


**Trouble-Shooting Labor Epidurals and Failed Top-ups** Jalal A. Nanji, B.Sc., M.D., FRCPC

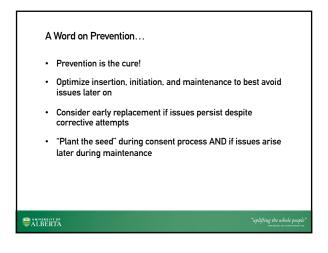
**Reducing Obstetric General Anesthesia: 10 Practical, Tested Tips** *Lawrence Tsen, M.D.* 

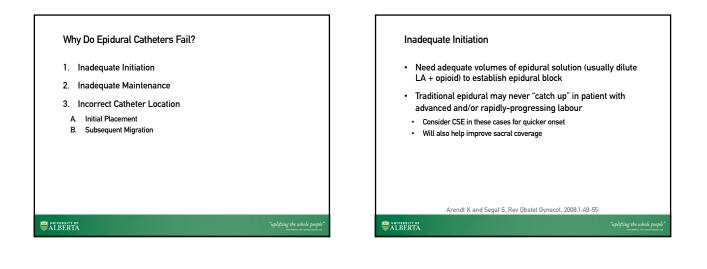
**Preventing and Treating Side Effects of Neuraxial Opioids** Ashraf S. Habib, M.B., B.Ch., M.Sc., M.S.N., FRCA

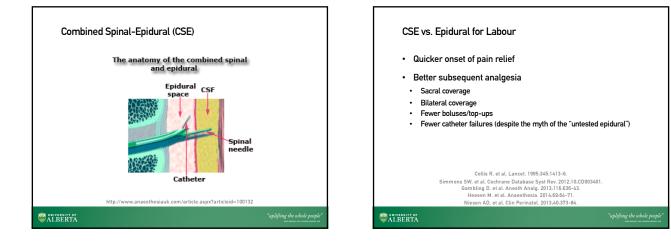


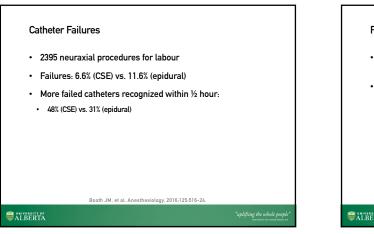


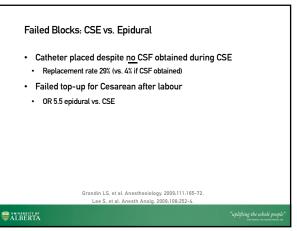


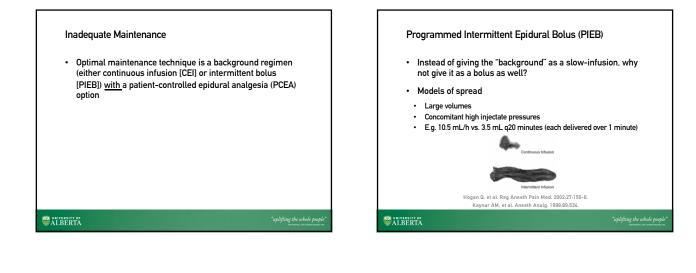

### Statistics


- Retrospective review of > 12,000 cases of obstetric neuraxial analgesia/anesthesia (> 19,000 deliveries)
- Overall failure rate of 12%
- 5.6% required direct replacement
- 1.5% required multiple replacements
- <u>98.8%</u> reported adequate labour analgesia

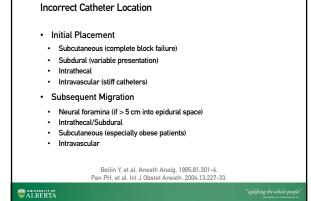

Pan PH, et al. Int J Obstet Anesth. 2004;13:227-33.

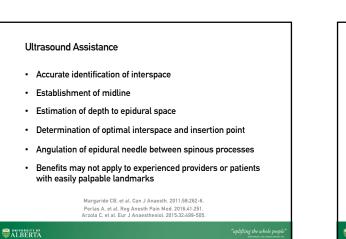

"uplifting the whole peop


ALBERTA

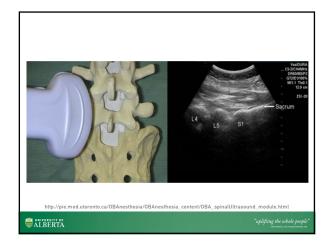


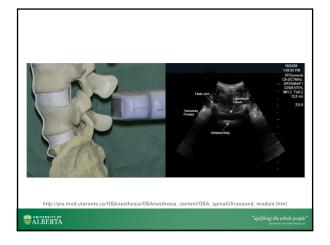


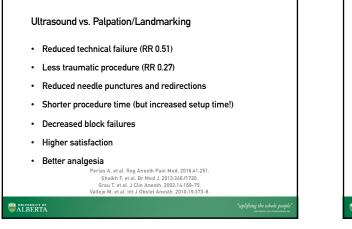



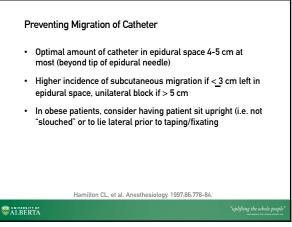





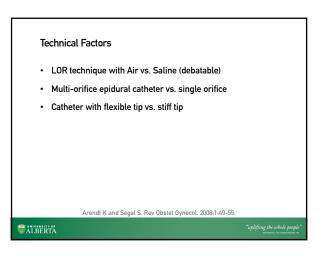





| IEB vs. CEI                                |                         |               |
|--------------------------------------------|-------------------------|---------------|
| Meta-Analysis Data Outcomes                | PIEB vs. CEI            | P-value       |
| Local Anesthetic Consumption               | -1.2 mg/h               | 0.01          |
| Maternal Satisfaction Scores               | 7.0 mm                  | <0.00001      |
| Duration of 2 <sup>nd</sup> Stage of Labor | -12 min                 | 0.04          |
| Mode of Delivery                           |                         |               |
| Cesarean Delivery                          | OR 0.87                 | 0.54          |
| Instrumented Delivery                      | OR 0.59                 | 0.05          |
| Anesthesia Interventions                   | OR 0.56                 | 0.08          |
| George RB, et al. Anesth                   | Analg. 2013;116:133-44. |               |
| TĂ                                         |                         | "uplifting to |

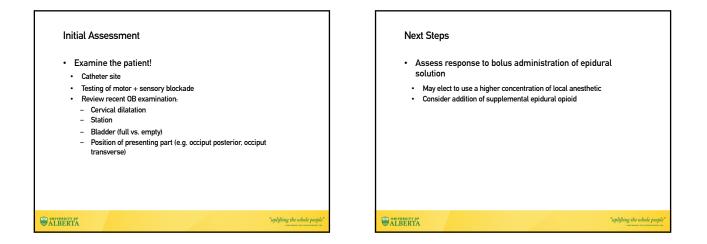


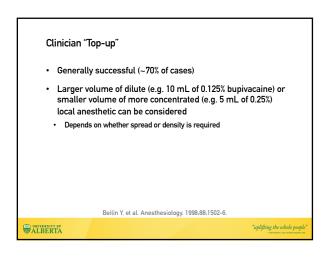



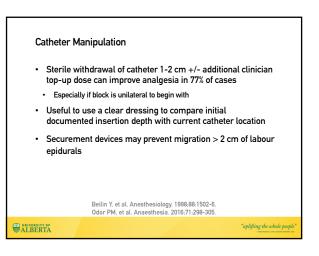


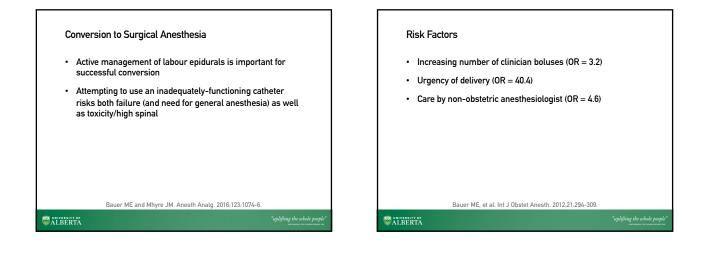




| Changes in Position                                                       |                             |                             |
|---------------------------------------------------------------------------|-----------------------------|-----------------------------|
|                                                                           | Obese Habitus<br>n = 46     | Normal Habitus<br>n = 206   |
| Change FLEX to LAT (cm)                                                   | $1.27 \pm 0.77^{\star}$     | $0.75 \pm 0.49$             |
| Distance to ES (cm)                                                       | $5.3 \pm 0.84^{*}$          | $4.2 \pm 0.71$              |
| Values are mean $\pm$ SD. * $P < 0.05$ . FLEX = flexed; LAT = lateral; ES | = epidural space.           |                             |
| Hamilton CL, et al. A                                                     | nesthesiology. 1997;86:774. | 8-84.                       |
| ALBERTA                                                                   |                             | "uplifting the whole people |












### **Expectation Management Catheter Replacement** · Not the patient's fault! · If more than 2 clinician top-ups are required and inadequate analgesia persists, replace the epidural catheter Pressure/tightening is normal during contractions if epidural is working · Consider performing a CSE in this case Does NOT increase risk of unrecognized catheter failure Significant pain is NOT normal prior to 2nd stage Actually reduced risk of failure · This process starts with consent prior to procedure · Quick-onset respite for patient with unexpected breakthrough pain Confirmation of epidural space by obtaining CSF through spinal needle Explanation of failure rate and risk of needing to redo block - More likely to thread catheter into a midline position Booth JM, et al. Anesthesiology, 2016;125:516-24. "uplifting the whole peo ALBERTA "uplifting the whole peo ALBERTA



## Sage Advice Every time you enter a patient room, ask yourself: Is the catheter functioning like it's in the epidural space? Do you have confidence in being able to use it for cesarean delivery? If the answer to either of these questions is no... DO SOMETHING about it!

ALBERTA

"uplifting the whole people

### HALBERTA

### Summary

- Prevention is the cure!
- · Epidurals can fail for myriad reasons
- Certain interventions during initiation and/or maintenance of a labour epidural can improve analgesic success
- Inadequate analgesia can usually be fixed with simple manoeuvres



Reducing General Anesthesia for Cesarean Delivery: 10 Practical Tested Tips!

A Fable

### SOAP Sol Shnider OB Anesthesia Meeting, 2019

### Lawrence C. Tsen, MD

Associate Professor in Anaesthesia, Harvard Medical School Director of Anesthesia, Center for Reproductive Medicine, Department of Anesthesiology, Perioperative and Pain Medicine Associate Director, Center for Professionalism and Peer Support Brigham & Women's Hospital

### A Fable

The Grasshopper's summer was squandered with singing, Now without a morsel, found winter most stinging. Off he went to the house of the Ant, his neighbor, To ask for a meager share of the fruits of her labor. Alas, he discovered, after an arduous journey through blinding ice and heavy snow, A sign, tacked firmly to her door:

"Wintering in Maui...

with all of my dough".

### Reducing GA for Cesarean: Learning Objectives

Upon Completion of this Learning Activity, Participants Should Be Able To:

Appropriate?

Not Possible?

Tips!

No Disclosures-

### Reducing GA for Cesarean: Learning Objectives

Upon Completion of this Learning Activity, Participants Should Be Able To:

Appropriate?

Not Possible?

Tips!

### Reducing GA for Cesarean: Appropriate?

- 38 yo, G3P0 at 36 weeks, 5'4", 280#, (BMI 48.1), MP IV
  - Preeclampsia (BP 168/88), gDiabetes, gThrombocytopenia (Plt 98)
  - Anterior Placenta Previa
  - Surgical History: Cholecystectomy, Appendectomy, Jaw Reconstruction

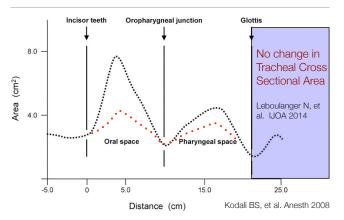
Fetus: Large for Gestational Age

### Reducing GA for Cesarean: Appropriate?

38 yo, G3P0 at 36 wks, 5'4", 280#, (BMI 48.1), MP IV

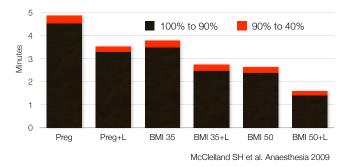
- Preeclampsia (BP 168/88), gDiabetes, gThrombocytopenia (Plt 98)
- Surgical History: Cholecystectomy, Appendectomy, Jaw Reconstruction
- Anterior Placenta Previa
- •Fetus: Large for Gestational Age

### Maternal Airway Changes


### Capillary Engorgement

Increased Class IV, Facial Edema & Swollen Tongue
Further Engorgement with Labor and Active Pushing




Pinkington et al., BJA 1995; Rocke et al., Anesth 1992; Kodali et al., Anesth 2008

### Maternal Airway Changes



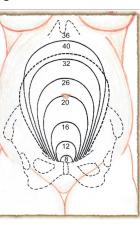
### Maternal Thoracic & Respiratory Changes

Increased Thoracic Chest Diameter/Breast Mass
Faster Desaturation (FRC -30%, O2 Demand +60%)

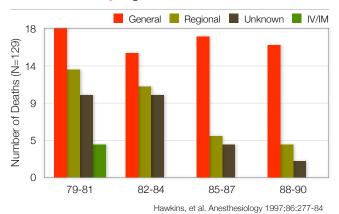


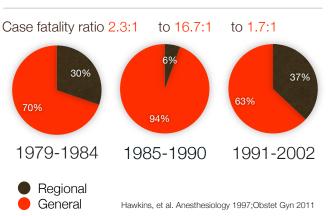
### Maternal Gastrointestinal Changes

### Uterine Encroachment


•Anatomic Stomach Compression

### Hormonal Changes


•LES Sphincter Tone


Gastric Emptying

Wong et al., A&A 2007 Nimmo et al., Lancet 1975



### Maternal Mortality Higher with GA






### Maternal Mortality Higher with GA

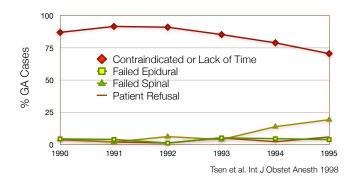
### Fetal Morbidity Worse with GA

| Emergent      | Design | UA pH       | Agpar <8 | Intubation  |
|---------------|--------|-------------|----------|-------------|
| Gale '82      | R      |             |          | GA worse    |
| Marx '84      | Р      |             | GA worse |             |
| Ong '89       | R      |             | GA worse | GA worse    |
| Elective      | Design | UA pH <7.20 | Apgar    | Ventilation |
| Evans '89     | R      | RA worse    | GA worse |             |
| Dick '92      | Р      | GA worse    | RA worse | GA worse    |
| Ratcliffe '93 | R      |             | GA worse |             |
| Roberts '95   | R      | RA worse    | GA worse | GA worse    |
| Mueller '97   | R      | RA worse    | RA worse | GA worse    |
| Sendag '99    | R      | RA worse    | RA worse |             |
| Kolatat '99   | Ρ      | GA worse    | GA worse |             |

### Fetal Morbidity Worse with GA



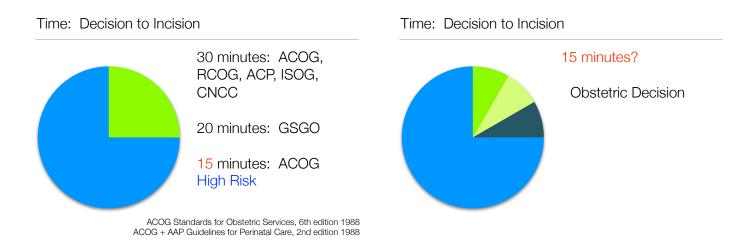
- Neural Stem/Progenitor Cells (NPCs)
- Neuron Creation, Migration, Differentiation, Synapsis Formation, Reorganization
- GABA agonism
   NMDA antagonism


Jevtovic-Todorovic V, J Neurosci 2003 Soriano S, Anesthesiology 2005 Palanisamy A, et al. Anesthesiology 2011 Reducing GA for Cesarean: Not Possible?

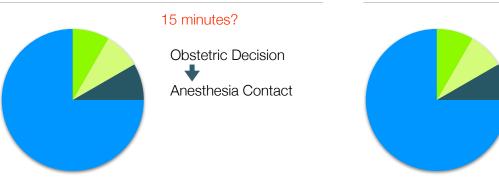
**Co-Morbidities** 

Time

### Reducing GA for Cesarean: Not Possible?


Lack of Time/Contraindications/Refusal?




### Time: Decision to Incision



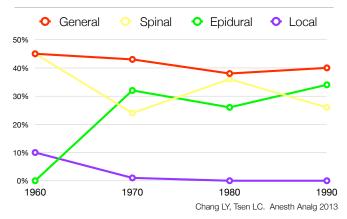


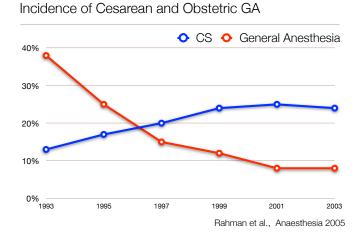


### Time: Decision to Incision

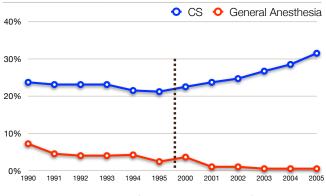


### Time: Decision to Incision



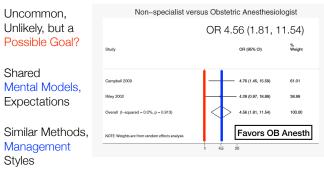




Lipman S, Tsen L, et al. SOAP Consensus Statement on Cardiac Arrest. A&A 2014


### Reducing GA for Cesarean: Tips

### Anesthesia Selection for Cesarean Delivery





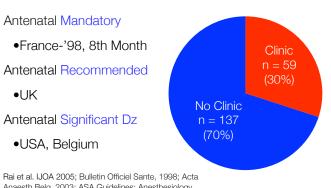

### Incidence of Cesarean and Obstetric GA



Tsen L et al. IJOA 1998; Palanisamy A, Tsen LC Anesth Analg 2011

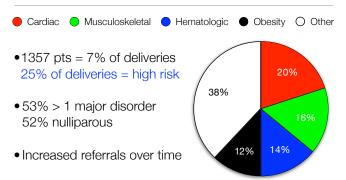
### Tip #1: Develop a "Core Team" with QA/QI




Bauer ME, Tsen LC, Mhyre JM, et al. IJOA 2012; 21:294-309 Chau A, Tsen LC. Anesth Analg 2017

### Tip #2: Institute "High Risk" Consult System-Need

Optimizes significant disease Creates a multispecialty plan: BACH Establishes expectations by patient and providers Allays anxiety in patient (and provider!) Generates referrals & revenue (n = 519;7.8%) Creates stakeholder in perioperative medical home Reduces maternal mortality (CMACE-counsel/referral)


> Bharwani F, MacArthur A. CJA 2013; Butwick AJ, Carvalho B, IJOA 2007 Cooper GM et al. BJA 2005; Tsen LC, et al. Anesth Analg 2002

### Tip #2: Institute "High Risk" Consult System-Value



### Rai et al. IJOA 2005; Bulletin Otticiel Sante, 1998; Acta Anaesth Belg, 2003; ASA Guidelines: Anesthesiology 2007; Butwick AJ, et al. IJOA 2007

### Tip #2: Institute "High Risk" Consult System-Value



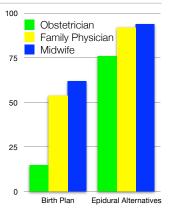
Bharwani F, Macarthur A. CJA 2014;61:282-3; Butwick AJ, Carvalho B, IJOA 2007

### Tip #2: Institute "High Risk" Consult System-How

| Distribute Guidelines |
|-----------------------|
|-----------------------|

- •On Call "Clinic" in Triage
- •Hours 9:00 am-2:00 pm
- •Send Consult Note + Bill
- Audit Cases/Remind

BWH Anesthesia Clinic 612 Patients/2.5 yrs Average: 2 pts/wk


### 30% Management Change

Request Consultant Order Test Request Outside Info Review Novel Info Tip #3: Mandate Ability to see all Parturients

### Tip #3: Mandate Ability to see all Parturients

Parturient Birth Plans

The Gold Standard Natural Child Birth: Midwife-Attended, Home Birth, Intervention-Free (No IV, Epidural or CS)



Reime B et al. BJOG 2004;111:1388-93 Malacrida C, et al. Health 2014;18:41-59

### Tip #4: Deputize an "Early Warning System"

- Obstetricians, Nurses, and Unit Clerks
- "Head's up" on Physiology/Anatomy, including Airway

| OB      | Pre | Post | Р  |
|---------|-----|------|----|
| Airway  | 59% | 60%  | NS |
| Consult | 47% | 50%  | NS |

• Providers influence Timing and Patient's Selection of Analgesia/Anesthesia, as well as Delivery Mode

Gaiser RR et al. Obstet Gynecol 1999;93:648-52

### Tip #3: Mandate Ability to see all Parturients-How

### Patient Room Visit

- Coordinate with other Providers: Introduction/Timing
- Respect Patient/OB Wishes and Relationship
- Don't "SELL" the Epidural Technique

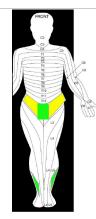
Emphasize Safety for Mother and Baby

Remind OB the value of Early Consult, High Risk Clinic

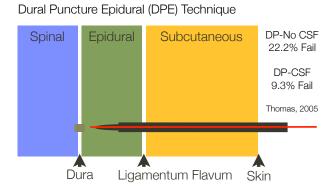
### Tip #4: Deputize an "Early Warning System"

### Joint Board Rounds

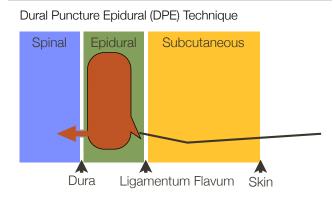
- 10 am/10 pm
- All Providers
- Goal: Information/Safety


Benefit: Names, Hierarchy, Norms (& Outliers), Rationale & Respect, Teamwork KSA's Teamwork Knowledge, Skills, and Attributes

Shared Mental Models Team Leadership Team Orientation Mutual Performance Backup Behavior Mutual Trust Adaptability Closed Communication


Chau A, Vijjeswarapu MA, Hickey M, Acker D, Tsen LC: Anesth Analg 2017

### Tip #5: Insert "Early Epidural" Catheters


- Before Requested or Required
- Consider Dural Puncture
   Epidural (DPE) Technique
- Dose Epidural Catheter (5-6 mL)
- Test Sensory Band
- Obstetric Anesthesia Guidelines Update Task Force, 2016



### Tip #5: Insert "Early Epidural" Catheters



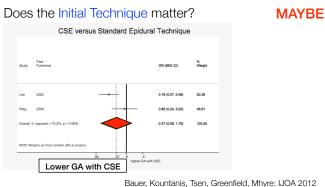
### Tip #5: Insert "Early Epidural" Catheters



### Tip #5: Insert "Early Epidural" Catheters

### Dural Puncture Epidural (DPE) Technique

|                                                                                                                                              | Thomas          | 2005 | 27G | No  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-----|-----|--|
|                                                                                                                                              | Suzuki          | 1996 | 26G | Yes |  |
|                                                                                                                                              | Wilson          | 2018 | 26G | Yes |  |
|                                                                                                                                              | Cappiello, Tsen | 2008 | 25G | Yes |  |
|                                                                                                                                              | Chau, Tsen      | 2017 | 25G | Yes |  |
| <ul> <li>Greater Bilateral and Sacral Block</li> <li>Faster Onset</li> <li>No Higher Sensory Spread</li> <li>No FHR Brady or PDPH</li> </ul> |                 |      |     |     |  |
|                                                                                                                                              |                 |      |     |     |  |


Thomas J, Anesthesiology 2005; Cappiello E, Tsen LC. A&A 2008 Suzuki N et al. 1995; Chau A, Tsen LC. A&A 2017, Wilson SH. A&A 2018

### Tip #5: Insert "Early Epidural" Catheters

| Characteristic           | CSE | DPE   | Epidural |
|--------------------------|-----|-------|----------|
| Location<br>Confirmation | Х   | x     |          |
| Onset                    | Х   | Х     |          |
| Sacral Spread            | Х   | Х     |          |
| Bilateral Spread         | х   | Х     |          |
| Tested Catheter          |     | Х     | Х        |
| Progress of Labor        | х   | X (?) |          |

Cappiello E, O'Rourke N, Segal S, Tsen LC. Anes Analg 2008;107:1646-51 Chau A, Tsen LC. Anesth Analg 2017

### Tip #6: Confirm "Functional" Epidural Catheter



### Tip #6: Confirm "Functional" Epidural Catheter

| Failed Blocks    | Epidural | CSE  | Needle   |
|------------------|----------|------|----------|
| Eappen<br>n=4240 | 13.1%    | 7.2% | 25G      |
| Norris<br>n=1660 | 1.3%     | 0.2% | 25G      |
| van de Velde     | 3.1%     | 1.5% | 27G, 29G |
| Thomas<br>n=248  | 9.3%     | 8%   | 27G      |

Bauer, Tsen, Mhyre. IJOA 2012; Thomas, Anesth 2005 Van de Velde, Anaesth Intens Care 2001; Norris, IJOA 2000; Eappen, IJOA 1998

### Tip #6: Confirm "Functional" Epidural Catheter

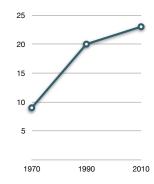


Bauer, Kountanis, Tsen, Greenfield, Mhyre: IJOA 2012

### Tip #6: Confirm "Functional" Epidural Catheter

Does the Duration of epidural analgesia matter? NO

|                  | Duration o                            | f Epidu         | ural Ana | gesia                  |             |
|------------------|---------------------------------------|-----------------|----------|------------------------|-------------|
| Study            | Year<br>Published                     |                 |          | SMD in hours (95% CI)  | %<br>Weight |
| Riley            | 2002                                  | 1.              |          | 0.17 (-0.29, 0.62)     | 15.43       |
| Tortosa          | 2003                                  | _               |          | -0.45 (-0.83, -0.06)   | 17.01       |
| Orbach-Zinger    | 2006                                  |                 |          | 0.22 (-0.27, 0.71)     | 14.78       |
| Lee              | 2009                                  | -               | . —      | 0.67 (0.19, 1.15)      | 14.98       |
| Campbell         | 2009                                  | -               |          | 0.02 (-0.17, 0.22)     | 20.56       |
| Halpern          | 2009                                  | -               |          | -0.59 (-0.96, -0.22)   | 17.23       |
| Overall (I-squar | ed = 78.6%, p = 0.000)                | $\blacklozenge$ |          | -0.02 (-0.34, 0.31)    | 100.00      |
| NOTE: Weights an | e from random effects analysis        |                 |          |                        |             |
|                  | -1<br>Shorter duration increases risk | 0               |          | 15<br>n increases risk |             |


Bauer, Kountanis, Tsen, Greenfield, Mhyre: IJOA 2012

### Tip #7: Reaffirm No "Emergent" Cesarean

Emergent Cesarean = 23%

### Acidosis with Decelerations

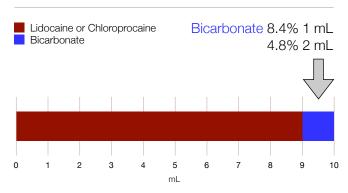
- Initially Normal to Late: 115 Minutes
- Initially Normal to Variable: 145 Minutes



CDC, National Center for Vital Statistics; Fleisher AJOG 1982

| · · ·                |                      |
|----------------------|----------------------|
| General or Spinal    | Epidural In-Situ     |
| Obstetric Decision   | Obstetric Decision   |
| Transport to Room    | Anesthesia Provision |
| Anesthesia Provision | Incision             |
| Incision             |                      |

### Tip #8: Implement "Fastest" Anesthesia Combo


### Tip #8: Implement "Fastest" Anesthesia Combo

| Study         | Agent                | Time    | Comment      |
|---------------|----------------------|---------|--------------|
| Gaiser, IJOA  | Chloro 3% + Bicarb   | 3.1 min | Extension T4 |
| 1998;7:27-31  | Lido 1.5% + Bicarb   | 4.4 min | Extension T4 |
| Lam, Anaes    | Lido 2% + Epi+Bicarb | 5.2 min | Extension T6 |
| 2001;56:790-4 | Lido 2% + Epi        | 9.7 min | Extension T6 |

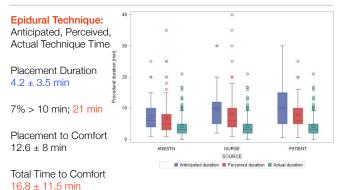
### Tip #8: Implement "Fastest" Anesthesia Combo

| Study         | Agent                | Time    | Comment      |
|---------------|----------------------|---------|--------------|
| Gaiser, IJOA  | Chloro 3% + Bicarb   | 3.1 min | Extension T4 |
| 1998;7:27-31  | Lido 1.5% + Bicarb   | 4.4 min | Extension T4 |
| Lam, Anaes    | Lido 2% + Epi+Bicarb | 5.2 min | Extension T6 |
| 2001;56:790-4 | Lido 2% + Epi        | 9.7 min | Extension T6 |

### Tip #8: Implement "Fastest" Anesthesia Combo

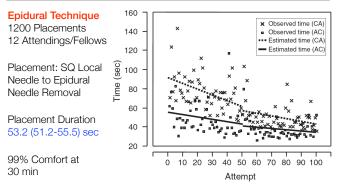


Peterfreund, Datta, Ostheimer. Reg Anesth 1989


### Tip #9: Affirm "Neuraxial Technique" Commitment

- 6393 Cesarean/8 years (2005-2013)
- 851 General Anesthetics
- Not just Emergent Cases

| Technique                                       | Cut               |
|-------------------------------------------------|-------------------|
| General Anesthesia                              | 5 (3-11)<br>min   |
| Spinal                                          | 20 (16-28)<br>min |
| Epidural in Situ                                | 22 (18-24)<br>min |
| General Anesthesia +<br>Prior Neuraxial Attempt | 26 (18-35)<br>min |


Heinrich et al. J Obstet Gyn Res 2015

### Tip #9: Affirm "Neuraxial Technique" Commitment

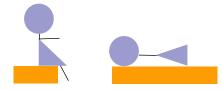


Clark A, Holck B, Mahoney B, Farber MK, Liu X, Tsen LC: IJOA 2015

### Tip #9: Affirm "Neuraxial Technique" Commitment



Carabuena JM, Mitani AM, Xiaoxia L, Kodali BS, Tsen LC: A&A 2013


### Tip #9: Affirm "Neuraxial Technique" Commitment

Are you faster than converting epidural analgesia?

| Study         | Agent                | Time    | Comment      |
|---------------|----------------------|---------|--------------|
| Gaiser, IJOA  | Chloro 3% + Bicarb   | 3.1 min | Extension T4 |
| 1998;7:27-31  | Lido 1.5% + Bicarb   | 4.4 min | Extension T4 |
| Lam, Anaes    | Lido 2% + Epi+Bicarb | 5.2 min | Extension T6 |
| 2001;56:790-4 | Lido 2% + Epi        | 9.7 min | Extension T6 |

### Tip #9: Affirm "Neuraxial Technique" Commitment

Are you facile with a lateral placement?



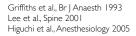
What about difficult spinal placements? (10-14%)

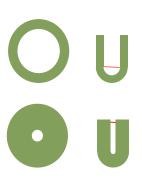
Tsen LC. Int J Obstet Anesth 2008 Sprung J, et al. Anesth Analg 1999; Chien I, et al. T JMS 2003

### Tip #10: Trouble-Shoot Neuraxial Technique

### Scenario #1

• Urgent Cesarean, Patchy Labor Epidural


### Solution


- Examine Epidural Analgesia History
- ► Give 6-10 mL Bolus Epidural Local Anesthetic
- Consider Spinal (Reduced Dose?)

### Tip #10: Trouble-Shoot Neuraxial Technique

### Epidural Space Fills...

- Compresses Dural Sac
- Makes Spinal Difficult
- Spreads Spinal Higher
- Dural Puncture Assists

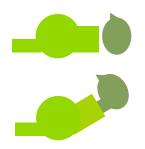




### Tip #10: Trouble-Shoot Neuraxial Technique

### Scenario #2:

• Urgent Cesarean, Spinal Failed


### Solution

- Consider Repeat Spinal (Reduced Dose?) Initial: bupivacaine 12-15 mg, fentanyl 10-20 µg (T8) Repeat: bupivacaine 10 mg, fentanyl 10-20 µg (T3)
- Consider Continuous Spinal Catheter

Dadarkar/Vadhera et al. Anesthesiology 2002;96:suppl I Stocks, GM; Wilson MJ. Pro-Con. IJOA 2005;14(1):53-7

### Tip #10: Trouble-Shoot Neuraxial Technique

- Head-Up Positioning (Semi-Fowler's)
- Limit Cephalad Spread
- Spinal Bupivacaine: Mobile up to 45 min



### Tip #10: Trouble-Shoot Neuraxial Technique

### Scenario #3: Urgent Cesarean, Intraop Pain

### Solution

- Consider Epidural Options
- ▶ Somatic: Chloroprocaine or Lidocaine (+ Bicarb)
- ► Viceral: Sufentanil/Fentanyl 20-50% to 5-10%
- Consider Analgesia/Anesthesia
- ▶ IV: Ketamine + Midazolam; Induction GA
- Inhaled: 50% Nitrous

Dahlgren et al. Anesth Analg 1997; Ginosar et al. Anesth Analg 2003

| Reducing GA for Cesa | arean: Summary |      |
|----------------------|----------------|------|
| Appropriate          | Not Possible?  | Tips |

### Reducing GA for Cesarean: Summary

### **Duke** Anesthesiology

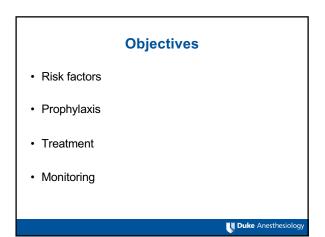
### Preventing and Treating Side Effects of Neuraxial Opioids

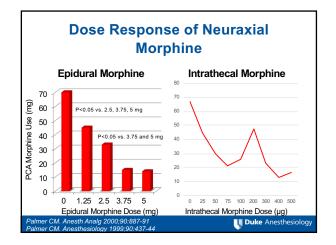
Ashraf S Habib, MBBCh, MSc, MHSc, FRCA Professor of Anesthesiology Professor in Obstetrics and Gynecology Chief, Division of Women's Anesthesia

### **Disclosures**

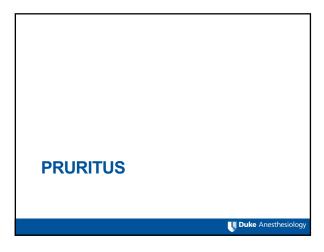
### Research Support

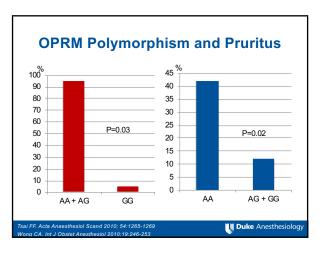
- Trevena Inc.
- Pacira Pharmaceuticals
- BioQ Pharma
- Haylard Health
- Advisory Board
  - Trevena Inc
  - Health Decisions

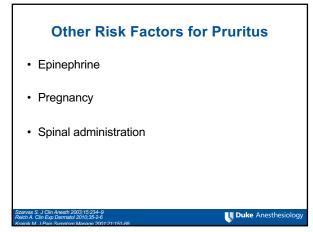

U Duke Anesthesiology

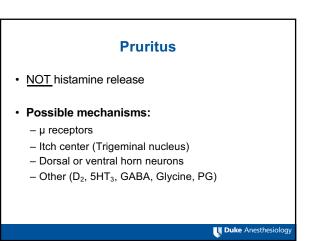


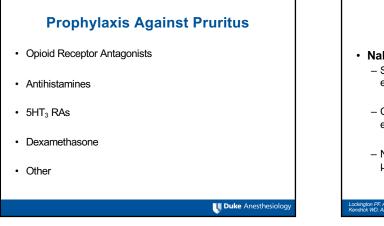

# Side Effects of Neuraxial Opioids Pruritus (40-90%) PONV (30-50%) Respiratory Depression (0-0.9%) Urinary Retention (22-58%) Hypothermia (6-7%)

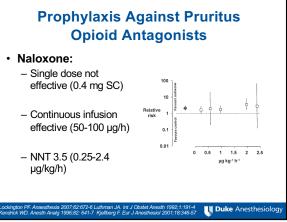

### Patient Preferences for Anesthesia Outcomes Associated with CD

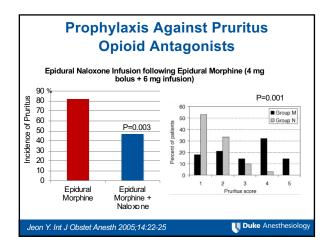

| Outcome                                  | Rank      | Relative Value          |
|------------------------------------------|-----------|-------------------------|
| Pain During Cesarean                     | 8.4 ± 2.2 | 27 ± 18                 |
| Pain After Cesarean                      | 8.3 ± 1.8 | 18 ± 10                 |
| Vomiting                                 | 7.8 ± 1.5 | 12 ± 7                  |
| Nausea                                   | 6.8 ± 1.7 | 11± 7                   |
| Cramping                                 | 6.0 ± 1.9 | 10 ± 8                  |
| Itching                                  | 5.6 ± 2.1 | 9 ± 8                   |
| Shivering                                | 4.6 ± 1.7 | 6 ± 6                   |
| Anxiety                                  | 4.1 ± 1.9 | 5 ± 4                   |
| Somnolence                               | 2.9 ± 1.4 | 3 ± 3                   |
|                                          |           | WW Dates Association    |
| Carvalho B. Anesth Analg 2005;101:1182-7 |           | <b>Duke</b> Anesthesiol |

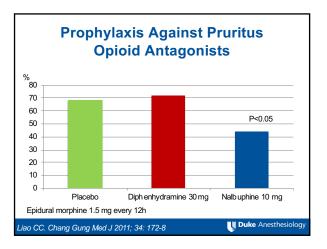


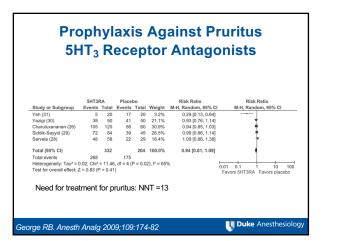



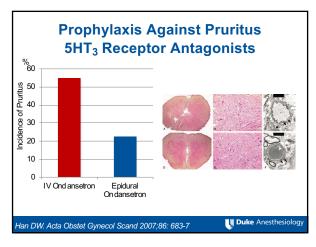


| Outcomes            | No. studies | No. patients (low dose,<br>high dose) | MD/OR | MD/OR (95% CI)       | Р      | p    | NNT/NNH |
|---------------------|-------------|---------------------------------------|-------|----------------------|--------|------|---------|
| Pain scores at 12 h | 2           | 74, 72                                | MD    | 2.54 (-2.55 to 7.63) | 0.33   | 0    | NA      |
| Pain scores at 24 h | 1           | 18, 19                                | MD    | 1.00 (-2.50 to 4.50) | 0.58   | NA   | NA      |
| Pruntus             | 8           | 228, 192                              | OR    | 0.34 (0.20 to 0.59)  | 0.0001 | 0    | 5.9     |
| Severe pruritus     | 5           | 156, 131                              | OR    | 0.32 (0.16 to 0.61)  | 0.0006 | 0    | 7.0     |
| Vomiting            | 7           | 180, 138                              | OR    | 0.38 (0.19 to 0.75)  | 0.005  | 0.03 | 7.7     |
| Nausea or vomiting  | 7           | 196, 174                              | OR    | 0.44 (0.27 to 0.73)  | 0.002  | 0    | 8.3     |
| Antiemetics         | 2           | 79, 75                                | ÛŔ    | 0.69 (0.32 to 1.45)  | 0.33   | Û    | NA      |

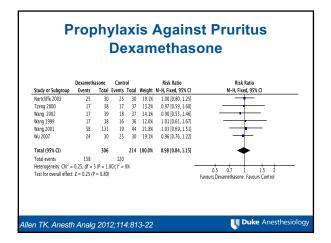


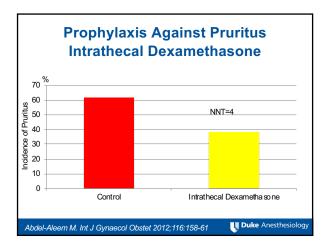



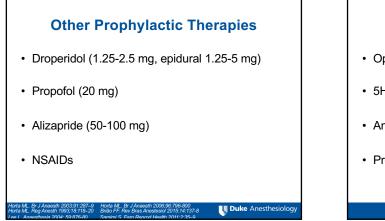



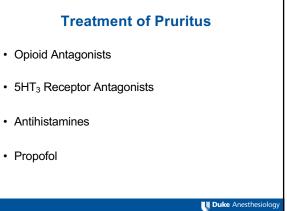



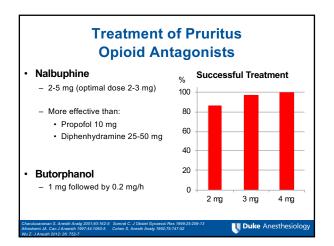



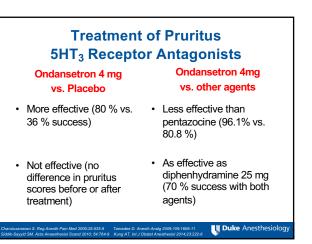



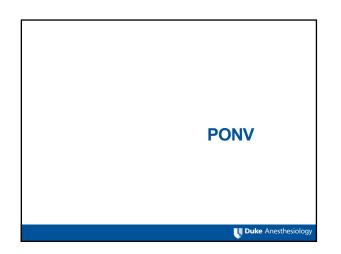



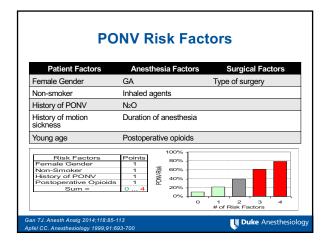



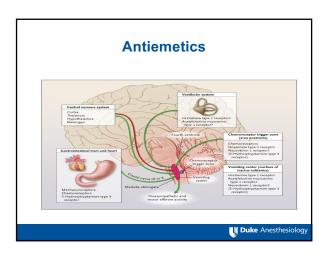









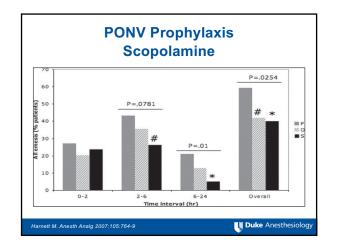



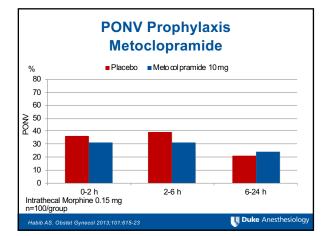



### **Risk Factors For PONV Following CD** Post hoc analysis of data from 2 RCTs with IONV/PONV as primary outcomes n=460, PONV= 54.4 % Apfel Risk Factors Additional Risk Factors History of PONV or motion sickness History of morning sickness Non-smoking status History of hyperemesis gravidarum Female gender Preoperative nausea Postoperative opioids IONV/ Need for rescue antiemetics Exteriorization of the uterus Intraoperative Hypotension Duke Anesthesiology AS. Obstet Gynecol 2013;121:61 e RB. Can J Anesth 2018;65:254

## **Risk Factors For PONV Following CD**

Apfel Score vs. Duke Score 1:0 0.8 0.6 Sensitivity 0.4 0.2 Apfel (AUC = 0.58) Duke Score (AUC = 0.63) 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1 - Specificity Duke score: 1 point: history of PONV after CD or history of morning sickness 1 point: Non-smoker during pregnancy Duke Anesthesiolog Anderson R. SOAP Meeting 2016

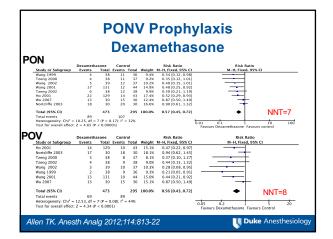


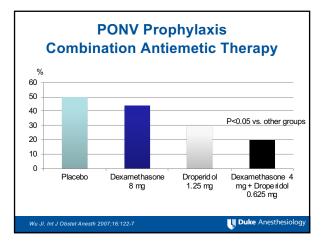


| Risk Factors                      | OR (95 % CI)               |     |                         |  |
|-----------------------------------|----------------------------|-----|-------------------------|--|
| History of PONV after previous CD | 1.7 (1.0, 2.8)             |     | n = 460<br>PONV = 54.4% |  |
| Never smoked                      | 2.0 (1.1, 3.8)             |     |                         |  |
|                                   |                            |     |                         |  |
| Factors Not Associated w          | ith Increased Risk         |     |                         |  |
| History of PONV after other       | surgeries                  |     |                         |  |
| History of motion sickness        | History of motion sickness |     |                         |  |
| History of morning sickness       | (p = 0.08)                 |     |                         |  |
| Preoperative nausea               |                            |     |                         |  |
| IONV/ Intraoperative rescue       | •                          |     |                         |  |
| Exteriorization of the uterus     |                            |     |                         |  |
| Intraoperative hypotension/       | Use of PE infusion         |     |                         |  |
| Habib AS. ASA Meeting 2015:A3033  |                            | U D | uke Anesthesiology      |  |
|                                   |                            |     |                         |  |

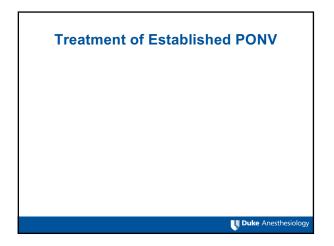
### Interventions for Preventing NV During CD Under Regional Anesthesia

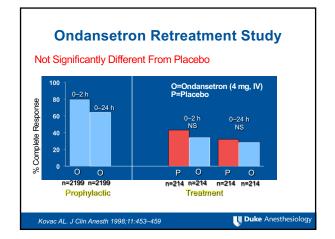
### **Effective Interventions**

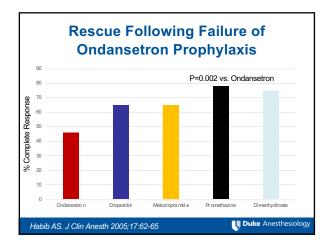
| Intervention<br>(n studies)        | Postoperative Nausea<br>RR (95 % Cl)<br>(n patients) | Postoperative Vomiting<br>RR (95 % Cl)<br>(n patients) |
|------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| 5HT3 RAs (5)                       | 0.40 (0.25, 0.64) (405)                              | 0.50 (0.32, 0.77) (565)                                |
| Dopamine Antagonists<br>(6)        | 0.60 (0.40, 0.91) (412)                              | 0.57 (0.36, 0.91) (472)                                |
| Antihistamines (3)                 | 0.38 (0.26, 0.59) (365)                              | 0.50 (0.30, 0.86) (184)                                |
| Anticholinergics (1)               |                                                      | 0.55 (0.41, 0.74) (161)                                |
|                                    |                                                      |                                                        |
| fiths JD. Cochrane Database Syst I | Rev. 2012;(9):CD007579                               | 🛄 Duke Anesthesiolo                                    |

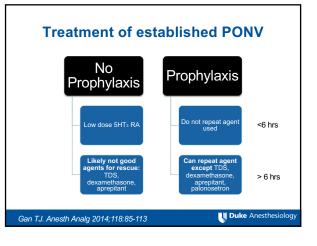


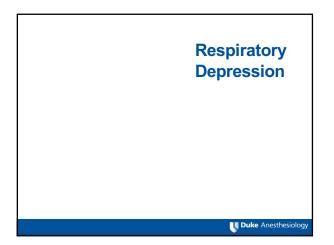





### Interventions for Preventing NV During CD Under Regional Anesthesia


### Ineffective Interventions

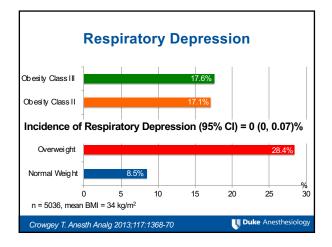

| Intervention<br>(n studies)      | Postoperative Nausea<br>RR (95 % Cl)<br>(n patients) | Postoperative Vomiting<br>RR (95 % Cl)<br>(n patients) |
|----------------------------------|------------------------------------------------------|--------------------------------------------------------|
| Dexamethasone (3)                | 0.75 (0.52, 1.07) (235)                              | 0.78 (0.54, 1.12) (295)                                |
| Nalbuphine (1)                   | 0.75 (0.39, 1.45) (120)                              | 1.25 (0.35, 4.43) (120)                                |
| Supplemental Oxygen (1)          | 0.65 (0.31, 1.36) (89)                               |                                                        |
| P6 Stimulation (3)               | 0.83 (0.68, 1) (429)                                 | 0.69 (0.45, 1.06) (429)                                |
|                                  |                                                      |                                                        |
| hs JD. Cochrane Database Syst Re | əv. 2012;(9):CD007579                                | 🛄 Duke Anesthesiolo                                    |

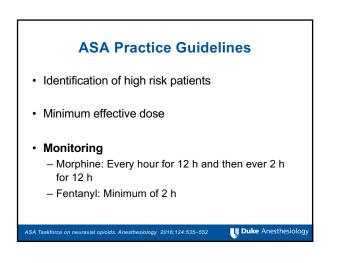


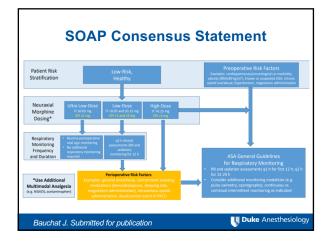



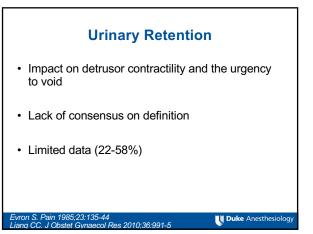


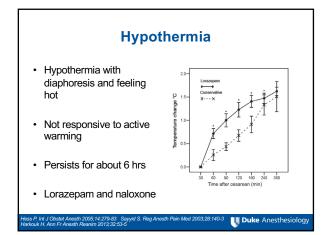


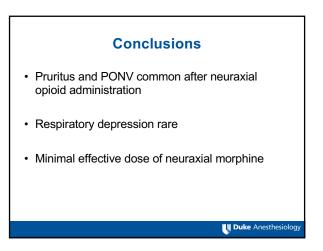













# Conclusions

# Pruritus

- Naloxone 0.25 µg/kg/h
- Nalbuphine 2.5 mg

# • PONV

- 5 HT₃ RAs
- Dexamethasone
- Anticholinergics
- Antihistaminergics
- Combination Antiemetics

**Duke** Anesthesiology



Extraordinary Care – Through a Culture of Innovation



# Saturday, March 16, 2019

# Session V: Obstetric Anesthesia Safety Session (ABA Part 2 MOCA Patient Safety Credit) Moderator: Gillian Abir, M.B., Ch.B., FRCA

**Current Evidence for the Prevention and Treatment of Spinal Hypotension** *Mark D. Rollins, M.D., Ph.D.* 

**Pregnant Patient with Chronic Pain and Opioid Addiction** *Pamela D. Flood, M.D., M.A.* 

**OSA in the Parturient: Implications for Peri and Post-Operative Period** *Jeremy Collins, FRCA, M.B.,Ch.B.* 



# Current Evidence for the Prevention & Treatment of Spinal Hypotension

Sol Shnider Obstetric Anesthesia Conference March 16, 2019

> Mark Rollins, MD, PhD Professor & Director Obstetric Anesthesia University of Utah Department of Anesthesiology

**No Disclosures** 

# Objectives

Participants should be able to discuss the impact of the following to prevent & treat spinal hypotension:

**Fluid Management** 

Vasopressors

**Uterine Displacement** 

# **Definition of Hypotension**

Two most common definitions...

1) A decrease below 80% of baseline

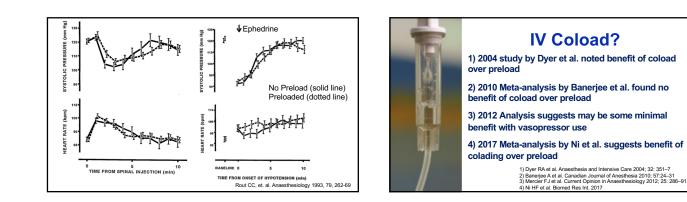
OR

2) Either a blood pressure below 100mmHg or a decrease below 80% of baseline

Klohr S, et al. Acta Anaesthesiol Scand 2010; 54: 909-921

# Why The Concern?


Maternal


- Nausea and vomiting
- Dizziness

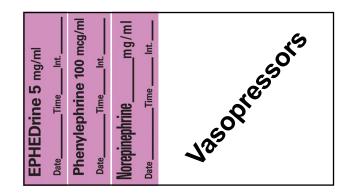
Fetal

- Acidosis
- Bradycardia

Kinsella SM, et. al. Anaesthesia 2018, 73, 71–92 Corke BC, et al. Anaesthesia 1982; 37: 658–62. Ngan Kee et al. BJA 2004, 92 (4): 469-74






Minerva Anestesiol. 2015 Sep;81(9):1019-30. Epub 2014 Dec 11.

Colloids versus crystalloids in the prevention of hypotension induced by spinal anesthesia in elective cesarean section. A systematic review and meta-analysis.

Ripollés Melchor J<sup>1</sup>, Espinosa Á, Martínez Hurtado E, Casans Francés R. Navarro Pérez R. Abad Gurumeta A. Calvo Vecino JM

A significant decrease in hypotension associated with spinal anesthesia was observed with the use of colloids compared to crystalloids

(RR [95% CI] 0.70 [0.53-0.92], P=0.01)



### Prophylactic Ephedrine Preceding Spinal Analgesia for Cesarean Section

### BRETT B. GUTSCHE, M.D.\*

Hypotension frequently occurs in parturi-ents undergoing cesareau section with high subarachnoid block, due to decreased cardiac by the gravid uterus, compounded by vaso-dilatation and bradycardia.<sup>1</sup> In normotensive parturients systolic blood pressures below 1000 metanal hydration are employed. Results indicated that left uterine displacement and maternal hydration alow enver not sufficient. parturients systolic blood pressures below 100 torr are associated with fetal bradycardia, in-dicating fetal distress *in utero*<sup>2</sup> as well as indicating neonatal depression at birth.<sup>3</sup>

tration of ephedrine was efficacious

Gutsche BB. Anesthesiology. 1976 Oct;45(4):462-5.

Placental Transfer and Fetal Metabolic Effects of Phenylephrine and Ephedrine during Spinal Anesthesia for Cessarean Deliver, FANZA, FHXAM, Km S, Kuw, MBBS, FRCA, FHXAM, Warwish D. Ngan Keo, MBD, BD, MD, FANZCA, FHXAM, Km S, Kuw, MBBS, FRCA, FHXAM, Popelus E Tan, BSc, MPNI, FTOIR F. Ng, RN, BASC, § Maroj K Kamatar, MBBS, FRCA, FHXAM,

### Results:

Lower umbilical artery or umbilical vein pH with ephedrine Greater umbilical cord lactate, glucose, epinephrine with ephedrine Placental transfer was greater with ephedrine (1.13 vs 0.17)

1)Ephedrine crosses the placenta to a greater extent and undergoes less early metabolism / redistribution 2)The overall effect of vasopressors on fetal oxygen supply and demand favors

phenylephrine

**Editorial View:** 

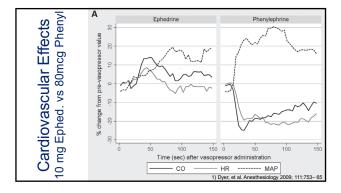
Department of Anesthesiology, PH-5, College of Physicians & Surgeons of Columbia University, New York, New York. rms7@columbia.edu

Burden of Proof

"...the evidence now is sufficient for a change in attitude and practice to be strongly encouraged."

"The weight of the evidence has now equaled the burden of proof, and our clinical burden should be to incorporate the evidence into our routine practice."

# Infusion vs Bolus Dosing?


Less hypotension and less nausea and vomiting with a phenylephrine infusion compared to bolus dosing

> 1) Ngan Kee WD, et al. Anesth Analg 2004;98(3):815-21. 2) das Neves JF. et al. Rev Bras Anastesia 2010;58(4):391-8. 3) Allen TK, et al. Anesth Analg 2010;111(5): 1221-9. 4) Siddlik-Sayyid SM, et al. Anesth Analg 2014;118(3):611-8. 5) George RB, et al. Can J Anesth / 2018 65:254-262

# **Optimal Infusion Rate?**

A 25 - 50 mcg/min infusion rate may be a preferable starting point for prophylactic phenylephrine compared with an initial infusion of 100 mcg/min

> 1) Butwick AJ, et al. BJA 114 (2): 183–6 (2015) 2) ) Allen TK, et al. Anesth Analg 2010;111: 1221-9. 3) Stewart A, et al. Anesth Analg 2010; 111: 1230–7



Randomized Double-blinded Comparison of Norepinephrine and Phenylephrine for Maintenance of Blood Pressure during Spinal Anesthesia for Cesarean Delivery

(Anesthesiology 2015; 122:736-45)

Warwick D. Ngan Kee, M.B.Ch.B., M.D., FA.N.Z.C.A., FH.K.A.M., Shara W. Y. Lee, B.Sc.(Hons.), M.Sc., Ph.D., Floria F. Ng, R.N., B.A.Sc., Perpetua E. Tan, B.Sc., M.Phil., Kim S. Khaw, M.B.B.S., M.D., F.R.C.A., F.H.K.A.M.

"norepinephrine was effective for maintaining blood pressure and was associated with greater heart rate and cardiac output compared with phenylephrine"

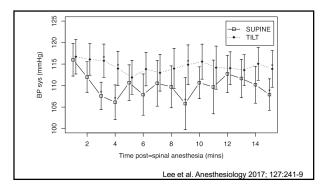
### Obstetric Anesthesio

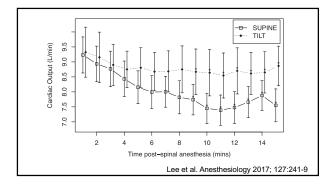
Prophylactic Norepinephrine Infusion for Preventing Hypotension During Spinal Anesthesia for Cesarean Delivery Anesth Analg 2018;126:1989–94)

Warwick D. Ngan Kee, MD, FANZCA, FHKCA,\* Shara W. Y. Lee, PhD,† Floria F. Ng, RN, BASc,\* and Kim S. Khaw, MD, FRCA, FHKCA\*

An open-label randomized controlled clinical trial for comparison of continuous phenylephrine versus norepinephrine infusion in prevention of spinal hypotension during cesarean delivery IJOA 2017. 29: 18-25

M.C. Vallejo,<sup>a</sup> A.F. Attaallah,<sup>a</sup> O.M. Elzamzamy,<sup>a</sup> D.T. Cifarelli,<sup>a</sup> A.L. Phelps,<sup>b</sup> G.R. Hobbs,<sup>a</sup> R.E. Shapiro,<sup>a</sup> P. Ranganathan<sup>a</sup>


doi:10.1111/anae.14080


# Is LUD Beneficial?

Left Lateral Table Tilt for Elective Cesarean Delivery under Spinal Anesthesia Has No Effect on Neonatal Acid–Base Status

A Randomized Controlled Trial (Anesthesiology 2017; 127:241-9)

Allison J. Lee, M.D., Ruth Landau, M.D., James L. Mattingly, C.R.N.A., Margaret M. Meenan, C.R.N.A. Beatriz Corradini, M.Sc., Shuang Wang, Ph.D., Stephanie R. Goodman, M.D., Richard M. Smiley, M.D., Ph.D.





# Anaesthesia 2018, 73, 71-92

# Guidelines

International consensus statement on the management of hypotension with vasopressors during caesarean section under spinal anaesthesia

S. M. Kinsella,<sup>1</sup> B. Carvalho,<sup>2</sup> R. A. Dyer,<sup>3</sup> R. Fernando,<sup>4</sup> N. McDonnell,<sup>5</sup> F. J. Mercier,<sup>6</sup> A. Palanisamy,<sup>7</sup> A. T. H. Sia,<sup>8</sup> M. Van de Velde<sup>9,10</sup>, A. Vercueil<sup>11</sup> and the Consensus Statement Collaborators

# Recommendations

1) Hypotension following spinal or combined spinalepidural anesthesia at caesarean section causes both maternal and fetal/neonatal adverse effects.

2 Hypotension is frequent and vasopressors should be used routinely and preferably prophylactically.

Kinsella SM, et al. Anaesthesia 2018, 73, 71-92.

# Recommendations

3) Alpha-agonist drugs are the most appropriate agents to treat or prevent hypotension following spinal anaesthesia. Although drugs with some beta activity may have the best profile phenylephrine is currently recommended due to the amount of supporting data.

4) Left lateral uterine displacement and intravenous colloid preloading or crystalloid coloading, should be used in addition to vasopressors.

Kinsella SM, et al. Anaesthesia 2018, 73, 71–92.

# Recommendations

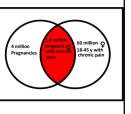
5) The aim should be to maintain systolic arterial pressure (SAP) at  $\geq$  90% of an accurate baseline obtained before spinal anesthesia, and avoid a decrease to < 80% baseline. We recommend a variable rate prophylactic infusion of phenylephrine using a syringe pump. This should be started at 25–50 mcg/min immediately after the intrathecal injection, and titrated to blood pressure and pulse rate.

Kinsella SM, et al. Anaesthesia 2018, 73, 71–92.

# Recommendations

6) Maternal HR can be used as a surrogate for CO if the latter is not being monitored; both tachycardia and bradycardia should be avoided.

7) When using an alpha-agonist as the first-line vasopressor, ephedrine is suitable to manage SAP < 90% of baseline combined with a low heart rate. For bradycardia with hypotension, an anticholinergic drug may be required. Epinephrine should be used for circulatory collapse.






# Pain is Common – Pregnancy is Common

- 4 million term pregnancies each year in the United States
- 25% of young adults 20-44 report chronic pain that interferes with their life
- Twice as common in women (33%)
- Any chronic pain syndrome that occurs in young women can superimposed upon pregnancy

http://www.cdc.gov/nchs/fastats/births.htm 2010 US Census





Pain Conditions Common

in Young Women

Figure 2. Percent of fema pain condition by age.

Percent

ts with  $\geq$  2 hours of LPT per week due to differ

Arthritis 👍 Back pain 🔚 - Headach

•

> 2 hours lost productive time

• Headache most common 5%

vw.fda.gov/downloads/Drugs/NewsEvents/UCM307835.pdf

per week

Back pain 2%

Arthritis 1.5%

• Fibromyalgia

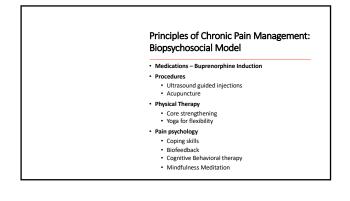
Pelvic Pain

Other 1%

# Impact of Pregnancy on Chronic Pain

### Some Conditions Get Worse:

- Low back Pain 2% before pregnancy, 60% of pregnant women report low back pain during pregnancy
- 20% of pregnant women report pelvic girdle pain during pregnancy, 50% is treated with medication
- Some Conditions Improve (but have exacerbations after delivery):
  - Headache
  - Autoimmune arthritis
  - Multiple Sclerosis


Interventions for preventing and treating low-back and pelvic pain during pregnancy. Cochrane Database of Systematic Reviews 2015, Issue 9. Art. No.: CD001139. Curr Neurol Neurosci Rep (2016) 16: 40 Neurotherapeutics. 2017 Oct;14(4):974-984



# **Common Comorbidities**

- Depression
- Anxiety
- May have had difficulty with previous procedures and providers Often feel negatively judged
- Sleep disorders
- Hyperalgesia Difficult IV placement
- Allodynia- tourniquet is painful
- Good time to gain trust



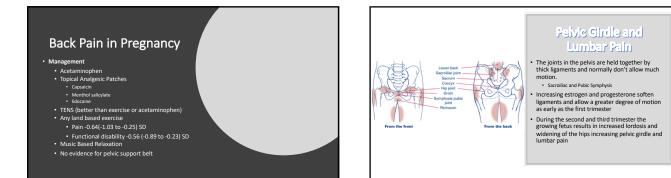


# Back Pain in Pregnancy: Management

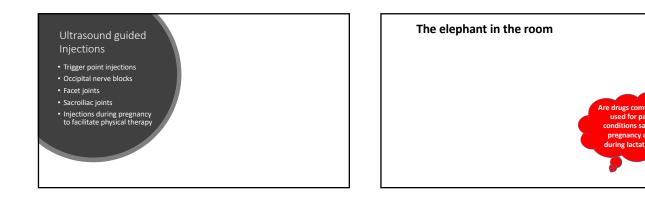
2% before pregnancy 60% during pregnancy Post Partum prevalence is 25% Relapse rate is high in subsequent pregnancies

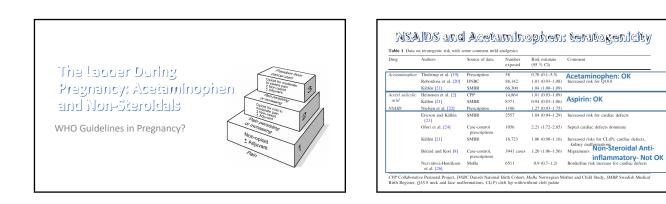
### Back Pain in Pregnancy and After:

etiology for onset of chronic back pain in young women?


 Risk Factors Increased WeightHistory of low back pain Low Job Satisfaction Etiology

Increased lumbar lordosis
 Inefficient neuromuscular control



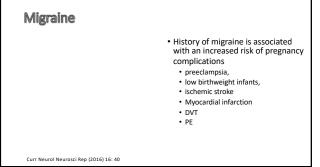


Pennick V<sup>1</sup>, Liddle SD, Interventions for preventing and treating pelvic and back pain in pregnancy. Cochrane Database Syst Rev. 2013

1



# 117






# Summary: NSAIDS and Acetaminophen During Pregnancy

- Aspiring OK
- Acetaminophen likely OK
- Non-steroidals
  - Risk of miscarriage first trimester
  - Multiple studies suggest small increase in risk of cardiac defects
  - Risk of closure of the ductus arteriosus third trimester

# Commonly Used Drugs During Pregnancy: Drugs for Migraine

Occurs in 5% of women and commonly recurs post-partum





| Table 3 Data on teratogenic risks for drugs used for migraine |                                    |                                |                           |                            |                         |                         |
|---------------------------------------------------------------|------------------------------------|--------------------------------|---------------------------|----------------------------|-------------------------|-------------------------|
| Drug                                                          | Authors                            | Source of data                 | Number exposed            | Risk estimate (95 %<br>CI) | Comment                 |                         |
| Ergots                                                        |                                    |                                |                           |                            |                         |                         |
| Ergotamine                                                    | Ács et al. [38]                    | HCCSCA                         | 13 cases, 17<br>controls  | 1.3 (0.3-2.7)              | bifida about bloc       | Concerns<br>about blood |
|                                                               | Källén et al. [39]                 | SMBR                           | 388                       | 0.82 (0.49-1.36)           |                         |                         |
| Dehydro-<br>ergotamine                                        | Källén et al. [39]                 | SMBR                           | 135                       | 0.78 (0.25-1.81)           |                         | pressure                |
|                                                               | Bérard and Kori [25]               | Case-control,<br>prescriptions | 5 cases, 48<br>controls   | 0.97 (0.22-4.28)           |                         |                         |
| Triptans                                                      |                                    |                                |                           |                            |                         | Many studie             |
| Sumatriptan                                                   | Cunnington et al. [40]             | Pregnancy register             | 413                       | -                          | 4.8 % malformed         |                         |
| Any triptan                                                   | Nezvalová-Henriksen et al.<br>[41] | MoBa                           | 1387                      | 1.0 (0.7-1.3)              | 653 with<br>sumatriptan | very clean<br>but most  |
| Any triptan                                                   | Källén et al. [39]                 | SMBR                           | 2777                      | 0.97 (0.81-1.16)           |                         |                         |
| Sumatriptan                                                   | Källén et al. [39]                 | SMBR                           | 2257                      | 0.99 (0.91-1.21)           |                         | cases with              |
| Zolmitriptan                                                  | Källén et al. [39]                 | SMBR                           | 362                       | 0.76 (0.43-1.35)           |                         | sumatriptan             |
| Any triptan                                                   | Bérard and Kori [25]               | Case-control<br>prescription   | 18 cases, 121<br>controls | 1.49 (0.89-2.52)           |                         |                         |
| Any triptan                                                   | Nezvalová-Henriksen et al.<br>[26] | NMBR prescription              | 1210                      | 1.13 (0.91-1.50)           | 415 with<br>sumatriptan |                         |

# Other ablatives for Migraine in Pregnancy

- Ondansetron new concerns case control study found increase risk of clefts with ondansetron, conflicting findings from 2 birth registries
- Butalbital (barbiturate with caffeine, acetaminophen asprine +/codeine)- medication overuse headache, fatal withdrawal syndromes. Historically considered safe but may have association with cardiac defects

Holland S, Silberstein SD, Freitag F, Dodick DW, Argoff C, Ashman E. Evidence-based guideline update: NSAIDs and other complementary treatments for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78(17):1346-53.

# Prophylactic Drugs for Migraine

- Magnesium dietary supplement 200-500 mg at night
- Topiramate used in epilepsy may or may not have a higher risk than no treatment
- Propranolol, nadolol, metoprolol betablockers have been used safely for hypertension
- Gabapentin No increased risk has been found in several registries

Newer-Generation Antiepileptic Drugs and the Risk of Major Birth Defects. JAMA, May 18, 2011—Vol 305, No. 19 $\,$  ©2011

# Summary: Migraine Management

- Triptans are likely safe, the best data is with sumatriptan
- Migraine prophylactics
  - Start with the more familiar in pregnancy
  - Magnesium citrate
    Beta blockers
- Emphasis on lifestyle changes

Ephross SA, Sinclair SM. Final results from the 16-year sumatriptan, naratriptan, and treximet pregnancy registry. Headache.2014;54(7):1158–72.

Kallen, Drugs (2016) 76:915-924

# Opioid Use is Common – Pregnancy is Common • 4 million term pregnancies each year in the United States • Private Insurance 28% of women of reproductive age filled an opioid prescription • Medicaid 39 % of women of reproductive age filled an opioid prescription • Opioid Use-in Pregnancy • Opioid use at first prenancy is between 2000 - 2006 • All pregnant women should be screened for opioid use at first prenancy: An overview. Carter (Li, Read MA, Read L, Nichola S, Schmidt E.



# Long Acting Opioids Prescribed by State

- The likelihood of your patient being on chronic opioids depends on where you practice (2012 data)
- This is decreasing due to regulation and increased consciousness, but still very common
- For your state up to 2015: https://ppsgchart.medicine.wisc.edu/

### 

# Are there neurodevelopmental risks? Is it the chicken or the egg?

### In this case, It's the chicken

### Opioids

- Prenatal exposure is associated with developmental delay
- only when the infants are raised by the opioid using mother
  Not when fostered with non-opioid using parents

Baldacchino A, Arbuckle K, Petrie DJ, McCowan C. Neurobehavioral consequences of chronic intrauterine opioid exposure in infants and preschool children: a systematic review and metaanalysis. BMC Psychiatry 2014; 14:104. Sithisarn T, Granger DT, Bada HS. Consequences of prenatal substance use. Int J Adolesc Med Health. 2012;24:105–12.

# Summary: Opioid Prescription

# During Pregnancy

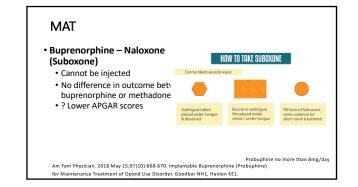
- Avoid synthetic opioids during the first trimester
- Opioids should be weaned before conception or (?) during the second trimester
  - Increase in incidence of miscarriage if withdrawal in the first trimester
     Increase in preterm birth if withdrawal in the third trimester
- Avoid codeine during lactation
- Codeine is a prodrug metabolized to morphine
- The amount and rate of metabolism is highly variable from none to producing very high fast peaks
- Neonatal deaths have been attributed to mismatch between ultrarapid metabolizing moms and slow and infants with immature morphine metabolism

# Opioid Use-Disorder - MAT



- · Daily dispensing with psychological support 86% of women need dose increase during pregnancy, and many need split dose
  - Dose reduction after 6 weeks
- No increase in NAS (neonatal abstinence syndrome)

JAAPA. 2019 Mar;32(3):20-24. Opioid use disorder during pregnancy: An overview Carter LC1, Read MA, Read L, Nicholas JS, Schmidt E.


# MAT

### Buprenorphine

- Fewer preterm births
- Lower risk or NAS
- · Can be prescribed in the office weekly or
- biweekly (4-32 mg) • Ceiling effect ?
- Increased adherence
- New long acting forms
- Monthly injection
- Implantable

Probuphine no more than 8mg/day Am Fam Physician. 2018 May 15;97(10):668-670. Implantable Buprenorphine (Probuphine) for Maintenance Treatment of Opioid Use Disorder. Goodbar NH1, Hanlon KE1.

Sublocade



# **Buprenorphine and Analgesia**

### Anesthesiologist

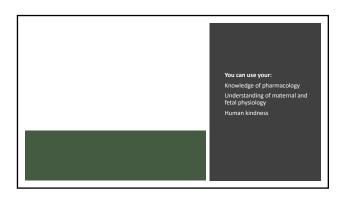
# • Partial Agonist – binds tightly

- Regional analgesia
- Other analgesics
- Low doses <2 mg can be overcome by a</li> full agonist

Am Fam Physician. 2018 May 15;97(10):668-670. Implantable Buprenorphine (Probuphine) for Maintenance Treatment of Opioid Use Disorder. Goodbar NH1, Hanlon KE1.

# Management of Labor and Delivery · Re assure - Patients with chronic pain may fear the impact of vaginal delivery or surgery They may be hyperalgesic Patients taking pain medications may have had adverse experience medical personnel who judge their use of medication during pregnancy Opioids need to be continued even with regional analgesia Need to prevent withdrawal Pre delivery daily requirement should be given in divided doses for pain patients and usually split dose for methadone • Emphasize regional analgesia whenever possible • It is the one treatment that a patient won't be tolerant to Consider adjuvant analgesics additive or synergistic when opiates are used

IF YOU WERE TO DESCRIBE BREASTFEEDING YOUR BAB


# Postpartum Management for the Chronic Pain Patient - Oploid Tolerant

- Hyperalgesia
   Chronic pain patients, even if not taking opioids may have higher sensitivity to pain, plan enhanced pain care in advance
   Regional analgesia is a mainstay and should be continued as long as possible, even in the setting of vaginal delivery
   Conciderate action and uncertainty

  - Consider other adjuvants
- Tolerance
  - Baseline daily dose is a minimum and increased opioids and other adjuvant medications are required
  - >100 MED difficult

# OK to Breast Feed? - YES!

- Consider this excerpt from The American Academy of Pediatrics Clinical Report:
- IN ONE WO • "Many mothers are inappropriately advised to discontinue breastfeeding or avoid taking essential medications because of fears of adverse effects on their infants. This cautious approach may be unnecessary in many cases, because only a small proportion of medications are contraindicated in breastfeeding mothers or associated with adverse effects on their infants."



# OSA in the Parturient Implications for Peri- and Postoperative Period

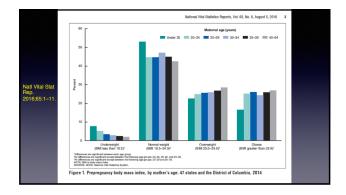
Jeremy Collins MB ChB FRCA Clinical Associate Professor, Stanford University

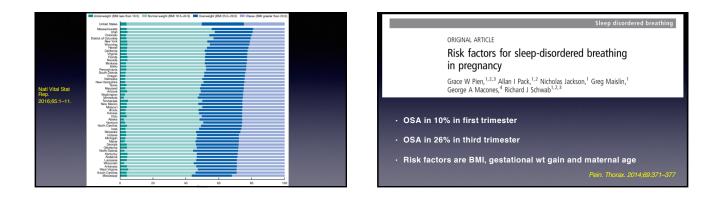
> Stanford MEDICINE



No conflicts of interest

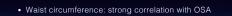
# Local OSA guideline?


Anaesth Intensive Care 2009; 37: 697-699

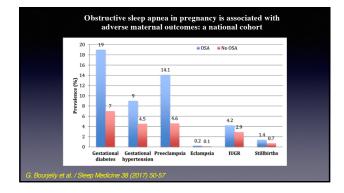

Editorials


Preoperative screening for obstructive sleep apnoea – are we losing sleep over nothing?

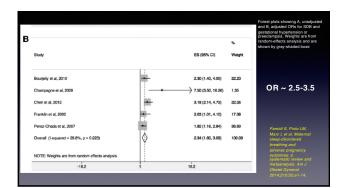

# Limited enthusiasm for diagnosis and treatment

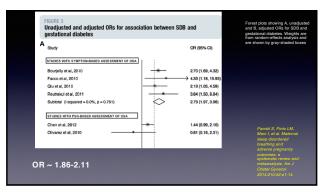

- Limited number of studies showing merits of intervention
- Limitation of sleep medicine referrals
- Limited patient compliance with treatmen
- Expense of Dx and Mx in an uninsured population

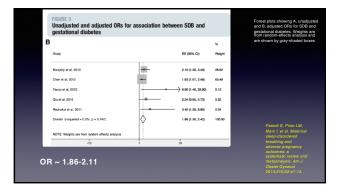


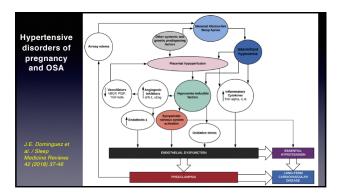


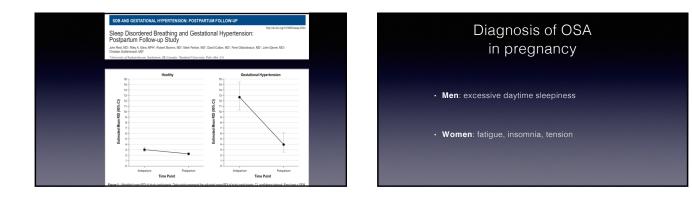


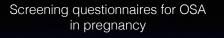



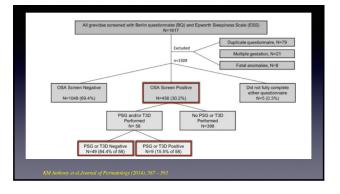


 Reduced activity of genioglossus with increased lung volume

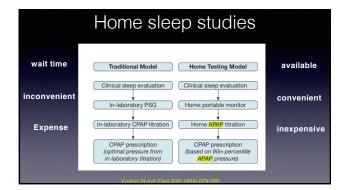




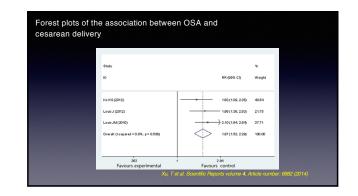








- STOP-BANG (age>50, NC, gender)
   Specificity improved by
   adding serum
- EPWORTH
- Sensitivity/specificity: 35% / 63%














# Peri-operative management guidelines for OSA in the parturient

### Peri-operative management guidelines for OSA in the parturient

- · Suspect and optimize early
- CPAP
- FUSILIO
- (Mandibular advancement devices)
- (Weight loss & sleep surgery)
- Opioids and multimodal analgesi

# SPECIAL ARTICLES

Practice Guidelines for the Perioperative Management of Patients with Obstructive Sleep Apnea

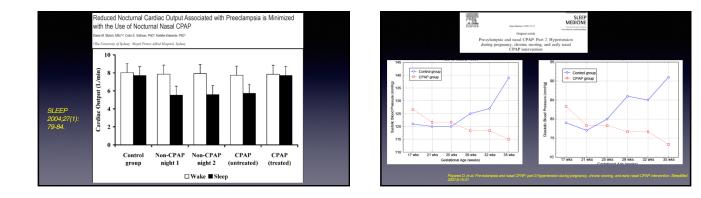
An Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Obstructive Sleep Apnea

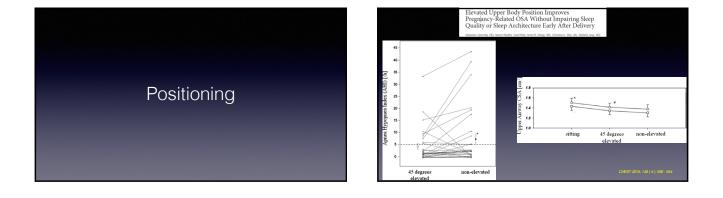
> Consensus driven vs evidence driven guidelines

# SPECIAL ARTICLES

Practice Guidelines for the Perioperative Management of Patients with Obstructive Sleep Apnea

An Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Obstructive Sleep Apnea


- similar consideration as for surgical patients optimize early
- CPAP machines should be used during admissior
- studies of bariatric patients suggest CPAP mitigates effect of opioids on OSA


Steam March Drivit Rilliana
Preoperatively Screened Obstructive Sleep Apnea Is
Associated With Worse Postoperative Outcomes Than
Previously Diagnosed Obstructive Sleep Apnea
Ara FerrandozeBustamarte, MD, PhD, Varstee Bartels, MD, \*Glaudi Calvig, MD,\*
Berginnin K, Scott, MP, Phendr Mczman, MD,\*
Kernerth Buildra, R. Angels FD, Moss, MS, 1

- Adverse respiratory events ?
- Respiratory interventions ?
- Hospital stay ?
- diagnosis on DOS associated with more interventions and longer stay

# CPAP - safe

- dry mouth
- aerophagia
- rhinitis
- skin abrasion:





# Elevated Upper Body Position Improves Pregnancy-Related OSA Without Impairing Sleep Quality or Sleep Architecture Early After Delivery

- AHI supine : 7.7±2.2/h
- AHI 45° elevation: 4.5±1.4/h
- CSA upper airway supine: 1.35±0.1cm

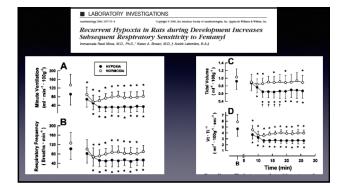
# SPECIAL ARTICLES

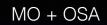
- Practice Guidelines for the Perioperative Management of Patients with Obstructive Sleep Apnea
- An Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Obstructive Sleep Apnea

# Challenge Respiratory effects of opioids OPIOIDS! • Reduced airway tone • Reduced central drive • Less response to hypoxia • Change in sleep architecture

# Challenges

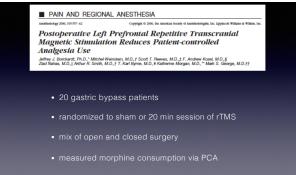
Common

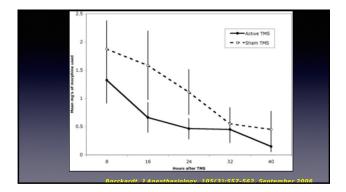

- Pk/PD in obesity more complex
- Heterogenous nature of obese population
- · Limited resources for postoperative observation
- · Associated co-morbdities

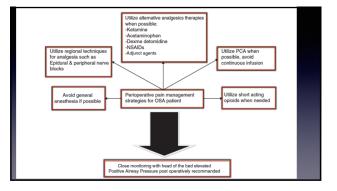

# Adequate pain control

· Early ambulation offsets risk of DVT

Increased satisfaction


Maintenance of lung volumes




- More uncertainty in dosing
- · Greater sensitivity to opioid
- Greater level of hypoxia as a result of those effects

# Transcranial Magnetic stimulation







# Obesity Surgery, 17, 920-925

Treatment with Lavender Aromatherapy in the Post-Anesthesia Care Unit reduces Opioid Requirements of Morbidly Obese Patients Undergoing Laparoscopic Adjustable Gastric Banding

Thank you

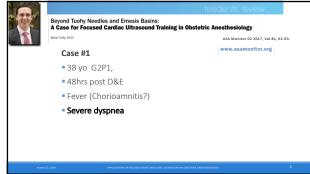


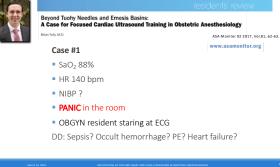
# Saturday, March 16, 2019

# Session VI: New Developments and Concepts Moderator: Jennifer M. Lucero, M.D., M.S.

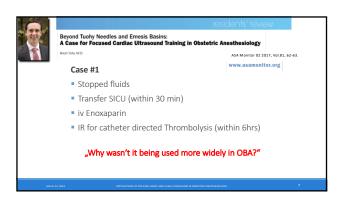
Point of Care Ultrasound in Obstetric Anesthesia Clemens M. Ortner, M.D., M.S., DESA

**Neuraxial Ultrasound: Practical Guide to Adoption** *Katherine M. Seligman, M.D.* 


Sam Hughes Lecture: Obstetric Anesthesia Year in Review Ashraf S. Habib, M.B., B.Ch., M.Sc., M.S.N., FRCA




# Point-of-Care Ultrasound in

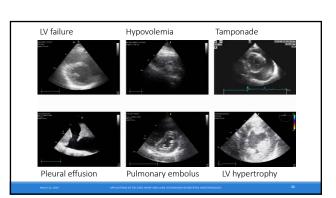

# Obstetric Anesthesiology

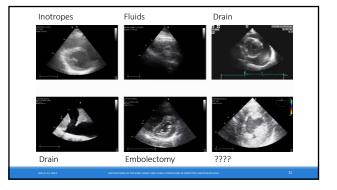
CLEMENS M. ORTNER, MD, MSC, DESA CLINICAL ASSISTANT PROFESSOR DEPARTMENT OF ANESTHESIOLOGY, PERIOPERATIVE AND PAIN MEDICINE STANFORD UNIVERSITY SCHOOL OF MEDICINE Conflict of interest: none

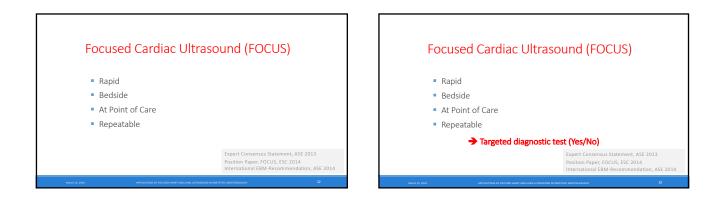


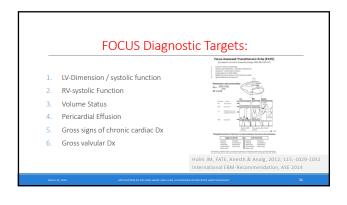


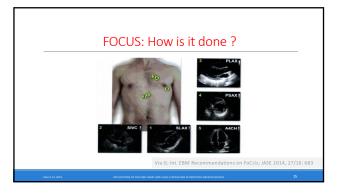


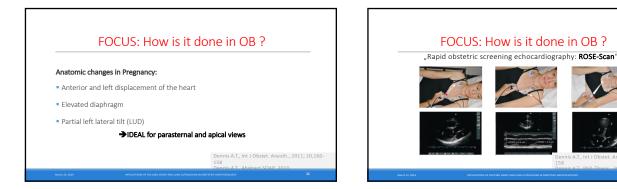




# Learning Objectives:


- Definition & Goals oft Focused Cardiac Ultrasound
- Applications of Lung Ultrasound in Obstetric Anesthesiology
- Ocular Sonography in Preeclampsia
- Gastric Ultrasound in the Obstetric Patient


# Focused Cardiac Ultrasound (FOCUS)


- 1. Why is this patient hypotensive?
- 2. Might this patient benefit from fluid loading?
- 3. Is major LV-dysfunction responsible for the shock state? Expert Consensus Statement, ASE 2013 Position Paper, FOCUS, ESC 2014 International EBM-Recommendation, ASE 2014



















# US-guided management of acute breathlesness

### Case #2

- 31yo G2P1 @ 36wks
- PMH: moderate to severe Asthma, ASD II
- Previous uncomplicated pregnancy
- Now dyspnea on minimal exertion
- Admitted on L&D with SOB
- Started on duonebs + diuresis

# US-guided management of acute breathlesness

### Case #2

- Initial improvement of symptoms,
- IOL for PreE and severe features
- Dyspnea + expiratory wheezing with labor
- Oliguria, plasma creatinine **↑**
- OB: "Is this related to hypovolemia or worsening PreE?"
- Fluid bolus?
- Cardiology: Yes
- Pulmonology: No
- CXR ordered

# US-guided management of acute breathlesness

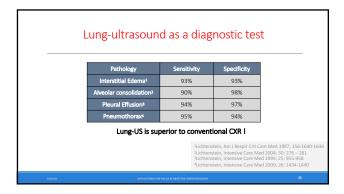
Case #

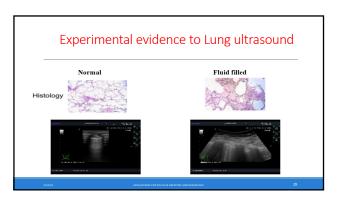
- Initial improvement of symptoms,
- Dyspnea + expiratory wheezing with labor
- Oliguria, plasmand then came Paul......
  OB: fluid bolus?
- Cardiology: Yes
- Pulmonolgy: No
- CXR ordered

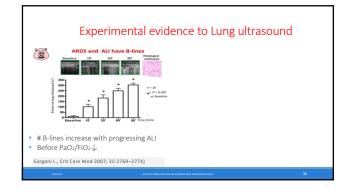
nterstitial Edema\* 93% 93% eolar consolidation\* 90% 98% Pleural Effusion\* 94% 97%

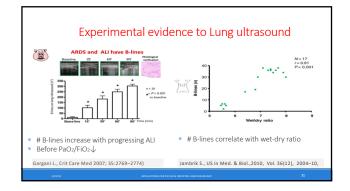
Lung-ultrasound as a diagnostic test

Sensitivity


95%

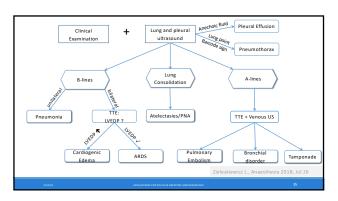

Pathology

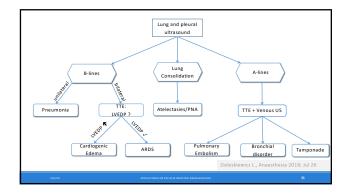

Lüchtenstein, Am J Respir Crit Care Med 1997; 156:1640-1646 2Lichtenstein, Intensive Care Med 2004; 30: 276 – 281 3Lichtenstein, Intensive Care Med 1999; 25: 955-958 4Lichtenstein, Intensive Care Med 2000; 26: 1434-1440

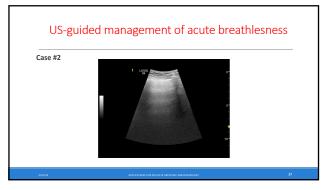

Specificity

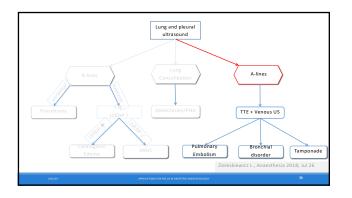
94%

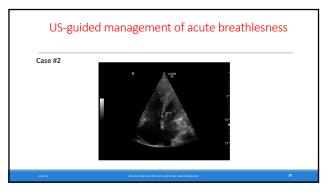


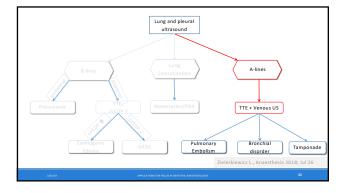


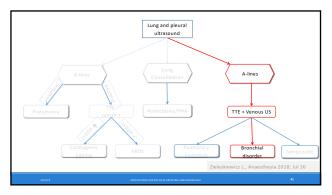





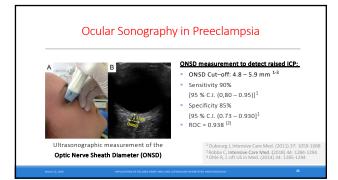









# Lung-Ultrasound and Preeclampsia


- 25<sup>1,2</sup> % Interstitial pulmonary syndrome present in severe preeclampsia
- 19<sup>1</sup>-20<sup>2</sup> % raised LVEDP on TTE
- B-pattern on Lung-US is associated with raised LVEDP on TTE<sup>1,2</sup>
- (Sensitivity 80-100 %, Specificity 80-85%)

### Zieleskiewicz L., Anesthesiology 2014; 120: 906-14 Ortner CM, Anesth & Analg. 2018; Sept. 10

# Lung-Ultrasound and Preeclampsia

- 25<sup>1,2</sup> % Interstitial pulmonary syndrome present in severe preeclampsia
- 19<sup>1</sup>-20<sup>2</sup>% raised LVEDP on TTE
- B-pattern on Lung-US is associated with raised LVEDP on TTE<sup>1,2</sup>
- (Sensitivity 80-100 %, Specificity 80-85%)

### → A-pattern on Lung-US excludes raised LVEDP

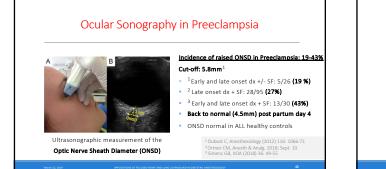


# Ocular Sonography in Preeclampsia



Optic Nerve Sheath Diameter (ONSD)

Ultrasonographic measurement of the


Optic Nerve Sheath Diameter (ONSD)

### Incidence of raised ONSD in Preeclamosia: 19-43% Cut-off: 5.8mm<sup>1</sup> = <sup>1</sup>Early and late onset dx +/- SF: 5/26 (19 %)

<sup>1</sup> Zieleskiewicz L., Anesthesiology 2014; 120: 906-14 <sup>2</sup> Ortner CM, Anesth & Analg. 2018; Sept. 10

- <sup>2</sup> Late onset dx + SF: 28/95 (27%)
- <sup>3</sup> Early and late onset dx + SF: 13/30 (43%)
   Back to normal (4.5mm) post partum day 4
   ONSD normal in ALL healthy controls
  - NSD Horman in ALL healthy controls

### <sup>1</sup> Dubost C, Anesthesiology (2012) 116: 1066-71 <sup>2</sup> Ortner CM, Anesth & Analg. 2018; Sept. 10 <sup>3</sup> Simenc GB, IJOA (2018) 36: 49-55



# B Incidence of raised ONSD in Preeclampsia: 19-43% Cutoff: 5.8mm<sup>1</sup> \* Cutoff: 5.8mm<sup>1</sup> \* Late onset dx +/ 5F: 5/26 (19 %) \* Late onset dx + 5F: 28/25 (27%) \* Late onset dx + 5F: 13/30 (43%) \* Striy and late onset dx + 5F: 13/30 (43%)

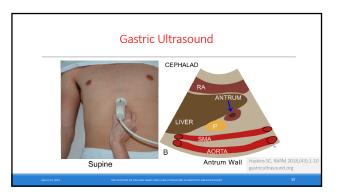
- <sup>3</sup> Early and late onset dx + SF: 13/30 (43%)
   Back to normal (4.5mm) post partum day 4
  - ONSD normal in ALL healthy controls

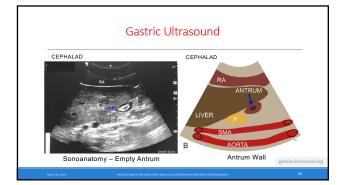
<sup>1</sup> Dubost C, Anesthesiology (2012) 116: 1066-71 <sup>2</sup> Ortner CM, Anesth & Analg. 2018; Sept. 10 <sup>3</sup> Simenc GB, IJOA (2018) 36: 49-55

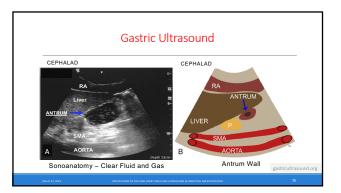
# Ocular Sonography in Preeclampsia

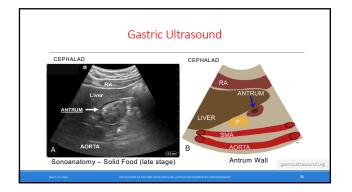
### Challenges in Interpretation:

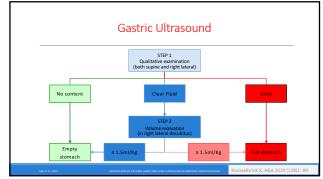
- > No correlation with neurologic symptoms (HA, visual disturbances)
- > No comparisons to direct or indirect ICP-measurements
- MRI studies in PreE showing focal swelling only (incidence: 0 -14.5 %)<sup>1-3</sup>
- Imaging artefarcts? (Lamina cribrosa or Optic disc edema)<sup>4-6</sup>
- Sign of disease severity?

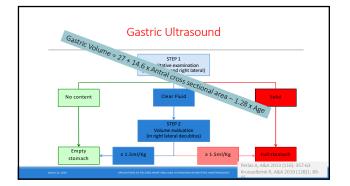

<sup>1</sup> Morris MC, Obstet. Synecol (1997), 89(4): 551-8 2 Matsuda H, J Perinat Med (2005), 33(3): 199-205 70 smanagaogla MA, Aust J 08 Gyn (2005),45(5): 384-90 <sup>4</sup> Blehar DJ, J Ultrasound Med (2008) 27(3): 407-11 <sup>6</sup> Copetit R, Intensive Care Med (2009) 35(8):1488-9 Fisieman MJ. Ultrasound Med (2012) 31(1): 30-1

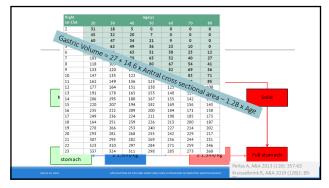

# Gastric Ultrasound in Obstetrics

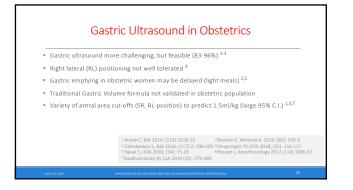

### Case #3

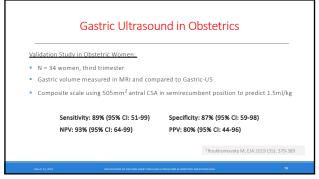

- 34yo G3P2 @ 37wks, ho CDx1 (failed spinal)
- PMH: healthy, BMI 38, Scoliosis
- Pregnancy complicated by ITP (Plts 70 G/l)
- Now contracting q 10-15min, Cervix @ 3cm
- OBGYN wants to proceed
- Coffee+cream and Cornflakes 5-1/2hrs ago
- → Wait? Proceed? How?

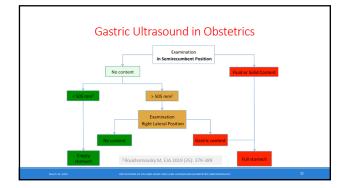






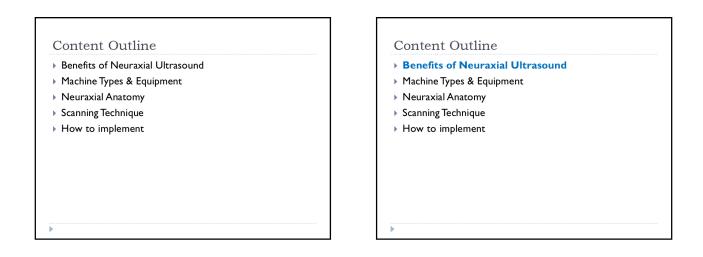


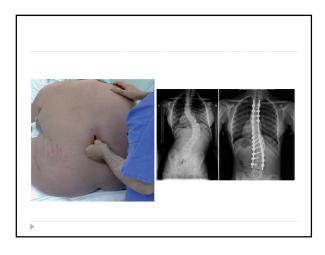







- 1 transducer = function of 13 piezzo electric probes!
  Costs go down (2000 \$ ?/ Transducer)
  - Losts go down (2000 \$ ?/ Transducer)
- Artificial intelligence for imaging acquisition





# Conclusion: Consensus Statement

"...the **use of FOCUS** for the evaluation of hemodynamic instability of uncertain or suspected cardiac ethiology meets **Class I recommendation** according to American and European Guidelines..."

Frankel H.L., "Guidelines for appropriate use of Cardiac Ultrasonography", Critical Care Medicine, 2016, 44/6: 1206-







# Benefits of Neuraxial Ultrasound

- Midline Identification
- Accurate identification of lumbar interspaces
- Increased success rates
- Identification of angle of entry
- Accurate estimation of depth to epidural space
- Decreased time to access neuraxial space

# Ability of anaesthetists to identify a marked lumbar interspace

C. R. Broadbent,<sup>1</sup> W. B. Maxwell,<sup>1</sup> R. Ferrie,<sup>1</sup> D. J. Wilson,<sup>2</sup> M. Gawne-Cain<sup>3</sup> and R. Russell<sup>4</sup>

- 100 Patients, level assessed in flexed lateral & sitting position
- MRI assessed where the marker was placed
- Experienced providers appropriately identified the correct interspace by palpation alone 29% of the time
- In 51% of cases, marker was one or more levels higher than predicted



### Ultrasound Assessment of the Vertebral Level of the Intercristal Line in Pregnancy Allion Line Mith Sutharms Banasinghe Mith \* Inter Marked Mith \* Kris Arteart Frith +

- Allison J. Lee, MD,\* J. Sudharma Ranasinghe, MD,\* Jules Marie Chehade, MD,\* Kris Arheart, EdD,† Bruce S. Saltzman, MD,\* Donald H. Penning, MD, MS, FRCP,\* and David J. Birnbach, MD, MPH\*
- 51 term pregnant patients
- 2 experience anesthesiologists palpated "intercristal line"
- > 3rd anesthesiologist ultrasound for vertebral level
   > Only 14% agreement between
- palpation & ultrasound
- Palpation One level higher than estimate - 23%
  - Palpation more than one level higher-





### J Clin Monit Comput (2015) 29:573-577 DOI 10.1007/s10877-014-9634-v CrossMark Ultrasound Using the Transverse Approach to the Lumbar Spine Provides Reliable Landmarks for Labor Epidurals ORIGINAL RESEARCH ola, Cristian MD; Davies, Sharon MD; Rofaeel, Ayman MD; Carvalho, Jose C. A. MD, PhD Author Informa Pre-puncture ultrasound guided epidural insertion before vaginal 61 pregnant patients enrolled delivery Curved Array probe identified Mah d Nassar · Ibrahim A. Abdelazim midline, intervertebral space & > 110 Randomized to Palpation vs. Ultrasound before CSE estimate depth (UD) to epidural space ▶ 67.27% I<sup>st</sup> pass success in Ultrasound vs. 40% Palpation Needle depth (ND) at loss of Ultrasound Group resistance was recorded Decreased Punctures/Attempts (1.2 vs. 2.3) Results Decreased Redirects (1.4 vs. 2.8) UD estimate within mean 0.68cm 91.8% success at ultrasound Palpation Group identified insertion point > 2 accidental dural punctures in palpation I<sup>st</sup> pass success rate 73.8% (no redirects) Mean time to identify puncture site longer in ultrasound group (9.1min vs. 6.2min)

### SPECIAL ARTICLE

### Lumbar Neuraxial Ultrasound for Spinal and Epidural Anesthesia A Systematic Review and Meta-Analysis

Anahi Perlas, MD, FRCPC, \*† Luis E. Chaparro, MD, \$ and Ki Jinn Chin, MD, FRCPC\*†

- Systemic Review including 31 studies
- Ultrasound depth estimates to epidural space correlate well with needle depth
- Ultrasound resulted in increased success and ease of performance
- Pooled data showed a 79% reduction in the risk of failed lumbar puncture
- Neuraxial ultrasound reduced risk of traumatic procedure
- •

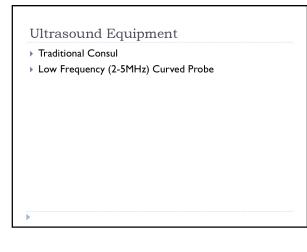
### Ultrasound Imaging Facilitates Spinal Anesthesia in Adults with Difficult Surface Anatomic Landmarks

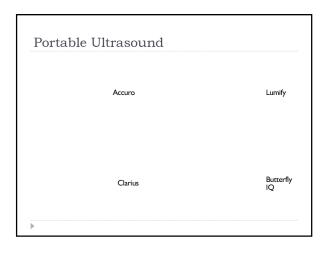
Ki Jinn Chin, F.R.C.P.C.,\* Anahi Perlas, F.R.C.P.C.,† Vincent Chan, F.R.C.P.C.,‡ Danielle Brown-Shreves, M.B.B.S.,§ Arkadiy Koshkin, M.D.,§ Vandana Vaishnav, F.C.A.R.C.S.I.|

### > 120 Ortho pts. undergoing spinal anesthesia

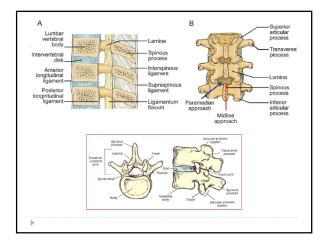
- BMI > 35 and poorly palpable spinous process
- Previous Spine surgery
- Severe lumbar scoliosis

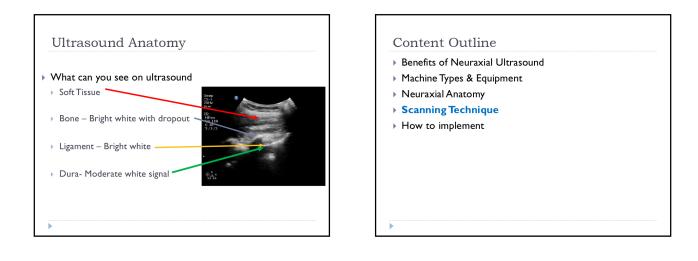
### Results

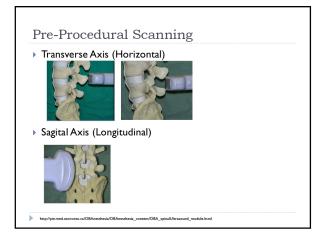

- First attempt success 65% in US vs. 32% in palpation
- Significantly decreased # of needle insertions
- Significantly decreased # of needle passes

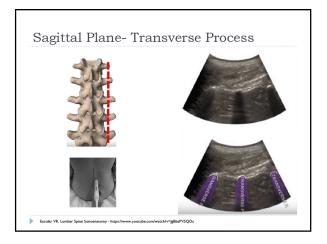

# **Content** Outline

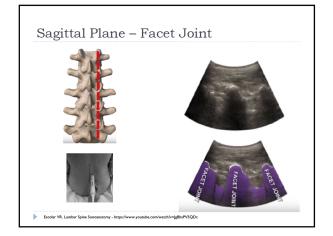
- Benefits of Neuraxial Ultrasound
- Machine Types & Equipment
- Neuraxial Anatomy
- Scanning Technique
- How to implement

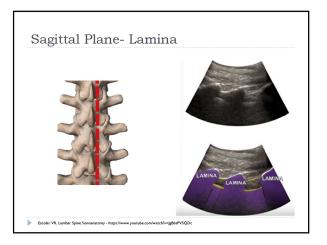

# Equipment Needed

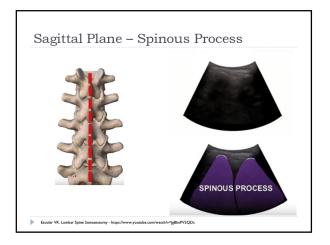

- Ultrasound (Portable or Consul)
- Curvilinear Probe
- Ultrasound Gel
- Marking Pen

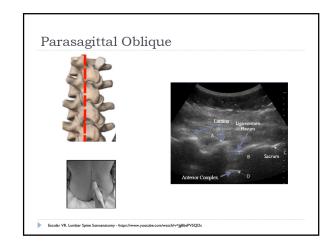


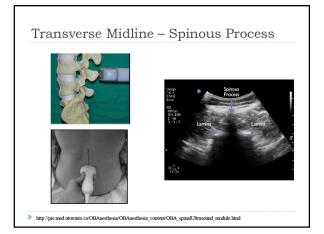



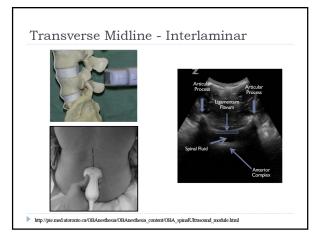


# Content Outline Benefits of Neuraxial Ultrasound Machine Types & Equipment Neuraxial Anatomy Scanning Technique How to implement

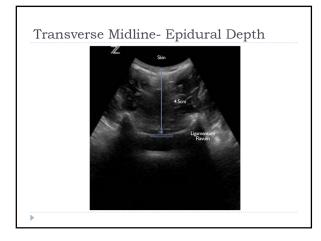


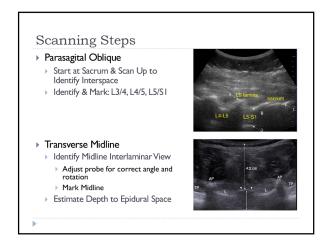



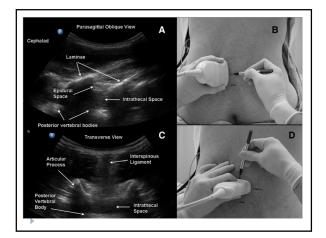



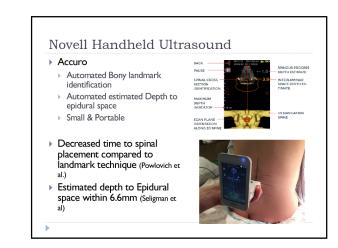













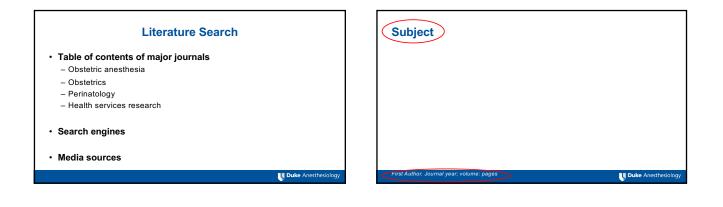

# **Practical Application**

## Learning curve can be steep

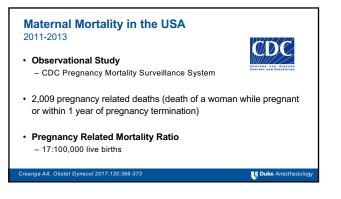
- Scan normal to familiarize yourself to anatomy
- Practice without time pressure

## Use what you have

- Curvilinear probe
- Marking Pen
- Ultrasound Gel
- Handheld Ultrasounds are portable & convenient


- Thank You
- Email:
- kseligman@salud.unm.edu

# References


- Broadbent CR, Maxwell WB, Ferrie R et al. Ability of anaesthetists to identify a marked humbar interspace. Anaesthesia 2000;55:1122-6.
- Vallejo MC, Phelps AL, Singh S, Orebaugh SL, Sah N. Ultrasound decreases the failed labor epidural rate in resident trainees. Int J Obstet Anesth. 2010;19(4):373-8.
- Lee AJ, Raussinghe JS, Cheldor JA, et al. Ultrasound Assessment of the Vertebral Level of the Intercristal Line in Pregnancy. Anenthesia & Audiesa. 2011;113(3):559-564. doi: 10.1213/ARE.06013e318222abe4.
  Azrola C, Davies S, Rofseld A, Carvalho JC, Bintsch DJ Ultrasound Using the Transverse Approach to the Lumbur Spine Provides Relabel Landmarks for Labor Fipdurals. Anesthesia & Analgesia. 2007;104(5):1188-1192. doi: 10.1213/01.ame.0000250912.66057.41.
- Perlas A, Chaparro LE, Chin KJ. Lumbar Neuraxial Ultrasound for Spinal and Epidural Anesthesia. Regional Anesthesia and Pain Medicine. 2016;41(2):251-260. doi: 10.1097/AAP.000000000000184. http://www.epidurahultrasound.com/ http://pie.med.utoronto.ca/OBAnesthesia/OBAnesthesia\_content/OBA\_spinalUltrasound\_module.html
- SM Ghosh, C Madjebour, KJ Chin, Ultrasound-guided lumbur central neuroxial block, *BLA Education*, Volume 16, Issue 7, 1 July 2016, Pages 213–220, Jihrps//doi.org/10.1095/bjaed/nkc048 Accuro Users Murall Ruymamethedi.com

148





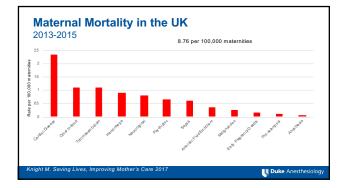




# Maternal Mortality in the USA 2011-2013

• Age


- 30% of pregnancy related deaths among women ≥ 35 years old


Race

 Non-Hispanic black women had 3.4 times higher risk of death than non-Hispanic white women

- · Obesity
  - 1:6 women who died were obese

reanga AA. Obstet Gynecol 2017;130:366-373





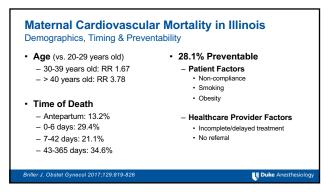
# Maternal Cardiovascular Mortality in Illinois 2002-2011

- Retrospective Study
  - Pregnancy related deaths in Illinois from 2002 to 2011
  - 140/636 (22.2%) died of cardiovascular causes (8.2:100,000 live births)

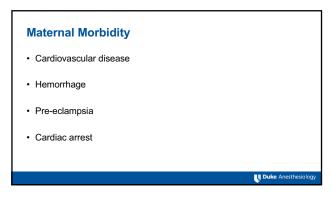
#### • Aims

 Estimate the role of specific CV diseases, examine demographics and estimate preventable mortality

ler J. Obstet Gynecol 2017;129:819-826


**Duke** Anesthesiolo

| Cause of Death           | Number (%) |
|--------------------------|------------|
| Cardiomyopathy           | 39 (27.9%) |
| Stroke                   | 32 (22.9%) |
| Hypertension             | 18 (12.9%) |
| Arrhythmias              | 15 (10.7%) |
| Coronary Artery Disease  | 13 (9.3%)  |
| Valvular Heart Disease   | 6 (4.3%)   |
| Aortic Dissection        | 4 (2.9%)   |
| Congenital Heart Disease | 4 (2.9%)   |


Briller J. Obstet Gynecol 2017;129:819-826

**U Duke** Anesthesiolog

U Duke Anesthe







#### **Bromocriptine for Peripartum Cardiomyopathy** RCT

## Background

- Pathophysiology: High levels of prolactin and the production of a cleaved 16kDa N-terminal fragment of prolactin

#### • RCT (n = 63)

- Short-term (1 week, 2.5 mg, 7 days) or long-term (8 weeks: 5 mg for 2 weeks followed by 2.5 mg for 6 weeks) + standard heart failure therapy
- Primary Outcome: LVEF change from baseline to 6 months

er-Kleiner D. Eur Heart J 2017;38:2671-2679



# **Maternal Morbidity**

- · Cardiovascular disease
- · Hemorrhage
- · Pre-eclampsia
- · Cardiac arrest

U Duke Anesthesiolog

U Duke Anesthes

# **Tranexamic Acid for Postpartum Hemorrhage** What we know · Tranexamic acid (TXA) reduces surgical blood loss · CRASH-2 Trial: TXA reduced death due to bleeding (early treatment within 3 h)



U Duke Anesthesiolo

· In 2012, WHO recommended TXA for PPH

Ker k. BMJ 2012;344:e3054

# **Tranexamic Acid for Postpartum Hemorrhage** The WOMAN Trial - Design

- RCT (n = 20,021, 193 hospitals, 21 countries)
  - Women with PPH received 1 gram TXA or placebo
  - Second dose: bleeding continued after 30 min or restarted within 24 h
- · Primary Outcome: Death from all causes or hysterectomy within 42 days of randomization
- Sample Size: 15,000 -→ 20,000

MAN Trial Collaborators. Lancet 2017;389:2105-2116

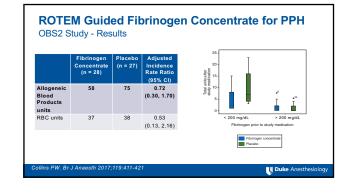
U Duke An

#### **Tranexamic Acid for Postpartum Hemorrhage** The WOMAN Trial - Results TXA (n = 10,036) Placebo (n = 9,985) RR (95% Cl) P value Death or Hysterectomy 0.97 (0.87, 1.09) 0.65 534 (5.3%) 546 (5.6%) 0.81 (0.65, 1.00) Death due to Bleeding 155 (1.5%) 191 (1.9%) 0.045 Death due to bleeding by time since delivery < 3 hrs: RR (95% CI) = 0.69 (0.53, 0.90)</p> > 3 hrs: RR (95 % Cl) = 1.07 (0.76, 1.51) Reduction in laparotomy due to bleeding (0.8% vs. 1.3%, p = 0.002) No difference in thrombo-embolic events (0.3% both aroups) MAN Trial Collabor tors. Lancet 2017;389:2105-2116 UNDUKe Anesth

## **ROTEM Guided Fibrinogen Concentrate for PPH** OBS2 Study - Design

#### Background

- Fibrinogen higher in pregnancy, low fibrinogen associated with massive PPH


## • RCT (n = 55)

- PPH 1000-1500 ml, Fibtem A5 ≤ 15 mm

ns PW. Br J Anaesth 2017:119:411-421

- Fibrinogen concentrate or placebo (target Fibtem A5 > 22 mm)
- · Primary Endpoint: Number of allogeneic blood products

📕 Duke Anesthesi



#### Safety Bundles and Hemorrhage Morbidity State Quality Collaborative

#### Background

- The California Maternal Quality Care Collaborative (CMQCC) · Developed obstetric hemorrhage tool kit
  - Established the California Partnership for Maternal Safety Collaborative
- Quality Improvement, Before-After Model
  - Baseline (01/2011-12/2014), Post-intervention (10/2015-03/2016)
- · Primary Outcome: Severe maternal morbidity in patients with obstetric hemorrhage ain EK. Am J Obstet Gynecol 2017;216:298.e1-298.e11

U Duke Anesthesiolog

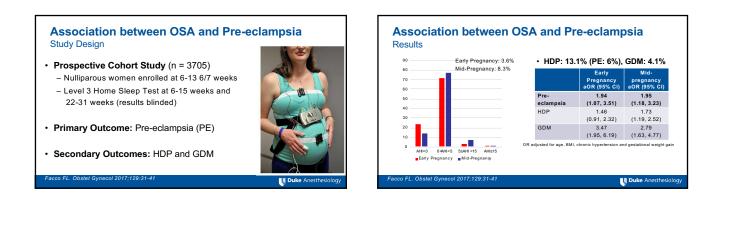
# Safety Bundles and Hemorrhage Morbidity State Quality Collaborative

| N  | BEFORE<br>morbidity/100<br>cases | AFTER<br>morbidity/100<br>cases | Reduction in<br>Morbidity                                  |
|----|----------------------------------|---------------------------------|------------------------------------------------------------|
| 99 | 22.7                             | 18.0                            | 20.8%                                                      |
| 48 | 28.6                             | 28.1                            | 1.2%                                                       |
|    |                                  | 99 22.7                         | cases         cases           99         22.7         18.0 |

U Duke Anesthesiolog

Main EK. Am J Obstet Gynecol 2017;216:298.e1-298.e11

# **Maternal Morbidity**


- · Cardiovascular disease
- · Hemorrhage
- · Pre-eclampsia
- · Cardiac arrest

#### Association between OSA and Pre-eclampsia What we know

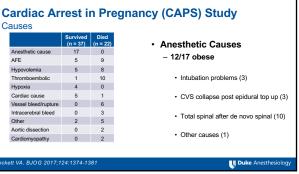
- OSA is a risk factor for hypertensive disorders of pregnancy (HDP) and gestational diabetes (GDM)
  - Cross-sectional and retrospective studies
     Self reported symptoms
  - Inadequate adjustment for BMI
  - Small prospective observational cohorts
  - Conflicting results
- OSA could be a modifiable risk factor



**Duke** Anesthesiolog



U Duke Anesthe


# Bundle on Severe Hypertension Pregnancy and Postpartum Readiness (Every Unit) • Diagnostic criteria/monitoring/Escalation • Education/ access to medications/ triaging Recognition and Prevention (Every Patient) • Protocols for BP and urine protein assessment Response (Every Patient) • Protocols for BP and urine protein assessment Response (Every case) • Standard protocols/checklists/escalation policies Reporting and Systems Learning (Every Unit) • Standard protocols/checklists/escalation policies • Culture of huddles/Dobriefs • Multidisciplinary reviews • Culture of huddles/Dobriefs • Multidisciplinary reviews • Multidisciplinary reviews • Date Anesthesiology

# Maternal Morbidity

- Cardiovascular disease
- Hemorrhage
- · Pre-eclampsia
- Cardiac arrest

U Duke Anesthesiology







# **Opioid Prescription and Use after Cesarean**

- · Leftover opioid could be diverted, abused or accidentally ingested
- Little information on patterns of opioid prescription and use after cesarean delivery
- · Sparse data on pain resolution and functional recovery

## **Duke** Anesthesiolo



#### Recovery after Nulliparous Birth Analgesia and Functional Recovery

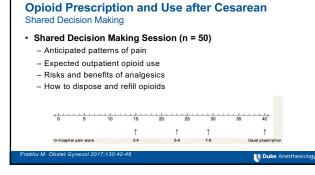
- 3,343 daily calls attempted (48% success rate), 134/213 completed the study
- **Opioid Use:** 31% (Vaginal Delivery), 91% (Cesarean Delivery)

|                              | Vaginal Delivery<br>(n = 99) | Cesarean Delivery<br>(n = 35) | P value                   |
|------------------------------|------------------------------|-------------------------------|---------------------------|
| Time to pain and opioid-     | 19 (3-77)                    | 27 (10-85)                    | 0.0003                    |
| free functional recovery     |                              |                               |                           |
| Time to opioid cessation     | 0 (0-14)                     | 9 (0-39)                      | < 0.0001                  |
| Data are median (range)      |                              |                               |                           |
| omatsu R. Anesthesiology 201 | 7;127:684-694                |                               | <b>U Duke</b> Anesthesiol |

# **Opioid Prescription and Use after Cesarean** Survey

- Phone Survey (n = 720): 2 weeks after CD at 6 academic centers
- 85.4% filled opioid prescription (higher pain scores)
- Median dispensed: 40, consumed: 20 tablets, 95.3% did not dispose of opioids

| Pills Dispensed | Pills Consumed<br>[Median (IQR)] | Satisfied/<br>Very Satisfied | Pain Scores<br>[Median (IQR)] | Need for Refills | Side<br>Effects |
|-----------------|----------------------------------|------------------------------|-------------------------------|------------------|-----------------|
| ≤ 30            | 15 (5-24)                        | 84%                          | 4 (3-5)                       | 5.9%             | 47%             |
| 31-40           | 20 (10-32)                       | 84%                          | 4 (2-5)                       | 5.0%             | 62%             |
| ≥ 40            | 32 (14-50)                       | 81%                          | 4 (2-5)                       | 5.8%             | 71%             |

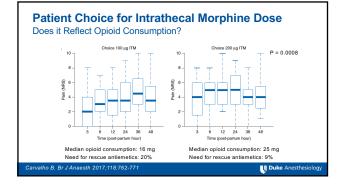

#### **Opioid Prescription and Use after Cesarean** Survey

#### Survey (n = 179)

- Phone or email survey on day 1 and 2 weeks after discharge following CD
- 83% used opioids, median dispensed 30 (8-84), median use 8 days

• 75% had unused tablets, median 10 tablets, 93% did not dispose of opioids

|                                                 | Top Opioid Quartile<br>(n = 44) | Average Opioid Quartile<br>(n = 135) | RR/OR (99% CI)         |
|-------------------------------------------------|---------------------------------|--------------------------------------|------------------------|
| Public Insurance                                | 66%                             | 46%                                  | 1.45 (1.09, 1.92)      |
| Smoking                                         | 18%                             | 5%                                   | 3.51 (1.35, 9.12)      |
| In hospital median<br>morphine mg equivalents/h | 1.6 mg                          | 1 mg                                 | 2.59 (1.61, 4.17)      |
| nundson SS. Obstet Gynecol                      | 2017;130:36-41                  |                                      | <b>Duke</b> Anesthesio |




| Outcome                     | Median or % |
|-----------------------------|-------------|
| Oxycodone tablets chosen    | 20          |
| Oxycodone tablets used      | 15          |
| Need for refills            | 8%          |
| Plan to dispose of opioids  | 67%         |
| Satisfied or very satisfied | 90%         |

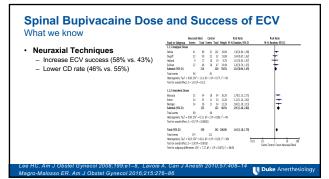
Patient Choice for Intrathecal Morphine Dose Does it Reflect Opioid Consumption?

#### Background

- Significant inter-individual in pain and preferences
- One size fits all approach
- RCT (n = 120)
  - Randomized to perceived choice or no choice
  - All randomized to 100 or 200 µg intrathecal morphine
- Primary Aim: Is patient's choice for intrathecal morphine dose reflective of pain and postoperative opioid analgesic use?
   Arvalho B. Br J Anaesth 2017;118:762-771



#### Left Lateral Tilt for Elective Cesarean Delivery Effect on Neonatal Acid-Base Status


- Background
  - Earlier studies suggested better neonatal clinical and acid base status with left lateral tilt

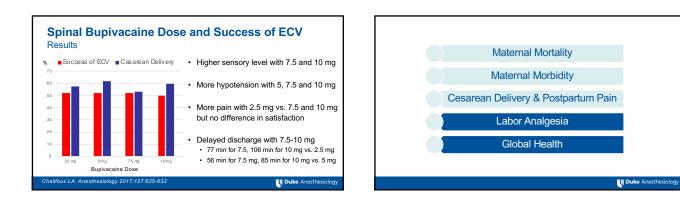
**Duke** Anesth

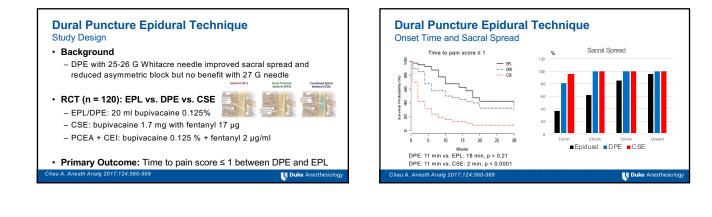
- Improved BP control with phenylephrine infusion and fluid co-load
- RCT (n = 100)
  - 15 degrees left table tilt or horizontal position, BMI  $\leq$  40 kg/m<sup>2</sup>
- · Primary Outcome: Umbilical artery base excess

Lee A. Anesthesiology 2017;127:241-249

<figure><figure>




# Spinal Bupivacaine Dose and Success of ECV RCT


- RCT (n = 239)
  - CSE with 4 doses of isobaric bupivacaine (2.5, 5, 7.5 and 10 mg) + fentanyl 15  $\mu g$
  - Patient, obstetrician, research nurse blinded
- Primary Outcome: ECV success



Chalifoux LA. Anesthesiology 2017;127:625-632

Ultraction Duke Anesthesiology





|                         | Epidural (n = 40) | DPE (n = 40) | CSE (n = 40) |
|-------------------------|-------------------|--------------|--------------|
| Asymmetric block        | 52.5%*            | 10%          | 10%          |
| Physician top-ups       | 50%*              | 22.5%        | 50%*         |
| Pruritus                | 10%               | 10%          | 67.5%*       |
| Hypotension             | 12.5%             | 12.5%        | 32.5%*       |
| Fachysystole/hypertonus | 12.5%             | 10%          | 45%*         |
| Category I-II FHR       | 12.5%             | 12.5%        | 32.5%*       |
| Cesarean Delivery       | 27.5 %            | 10%          | 5%           |

# Epidural Analgesia during Second Stage What we know

- Epidural analgesia may be associated with prolonged second stage and increased instrumental deliveries
- Some obstetric providers request discontinuation of epidural analgesia during second stage of labor

UNDER A Desthesiolog

# Epidural Analgesia during Second Stage Study Design

# • RCT (n = 400)

- Healthy nulliparous women in spontaneous labor
- Ropivacaine 0.08% + Sufentanil 0.4 µg/ml (CEI + PCEA)
- Second stage
- Randomized to same solution or saline at 8 ml/h
- Primary Outcome
  - Duration of the second stage of labor

Shen X. Obstet Gynecol 2017;130:1097-1103

U Duke Anesthesiolog

# Epidural Analgesia during Second Stage Results

|                                     | 52 ± 27         0.52           2 (1%)         0.50 |  |
|-------------------------------------|----------------------------------------------------|--|
| • • • • •                           | 2 (1%) 0.50                                        |  |
| Forceps 2 (1%)                      |                                                    |  |
|                                     | 5 (2.5%) 0.25                                      |  |
| Episiotomy 64 (32%)                 | 70 (35%) 0.52                                      |  |
| Satisfaction Score <8/10 61 (30.5%) | ) 32 (16%) < 0.001                                 |  |

Shen X. Obstet Gynecol 2017;130:1097-1103

#### Impact of Epidural Fentanyl on Breastfeeding What we know

- · Synergistic effect between local anesthetics and opioids
- Conflicting Data
  - Beilin: Epidural fentanyl > 150 µg: more likely to stop breastfeeding at 6 weeks + low neonatal behavioral scores
  - Wilson: Labor epidural analgesia (+/- epidural fentanyl): No impact on initiation or duration of breastfeeding
  - French: No definitive conclusions

#### Impact of Epidural Fentanyl on Breastfeeding Study Design

#### • RCT (n = 305)

- Women > 38 weeks (with prior breastfeeding success) randomized to CEI + PCEA with:
  - Bupivacaine 1 mg/ml + Fentanyl 0 µg/ml
  - Bupivacaine 0.8 mg/ml + Fentanyl 1 μg/ml
  - Bupivacaine 0.625 mg/ml + Fentanyl 2 µg/ml
- Primary Outcome: Breastfeeding at 6 weeks

Lee Al. Anesthesiology 2017;127:614-624

Unite Anesthesiology

| Impact of E<br>Results       | pidural Fenta                                       | nyl on Breas                                         | tfeeding                                               |
|------------------------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
|                              | Bupivacaine 0.1% +<br>Fentanyl 0 μg/ml<br>(n = 111) | Bupivacaine 0.08% +<br>Fentanyl 1 μg/ml<br>(n = 109) | Bupivacaine 0.0625% +<br>Fentanyl 2 µg/ml<br>(n = 112) |
| Breastfeeding at 6<br>weeks  | 97%                                                 | 98%                                                  | 94%                                                    |
| Breastfeeding at 3<br>months | 94%                                                 | 96%                                                  | 88%                                                    |
| LATCH assess                 | 9 5 (9 0)                                           | 9 (9 0)                                              | 0 (8 0)                                                |

Only 18% exposed to cumulative fentanyl dose > 150 μg (CSE + short labor)

U Duke Anesthesiolog

🛄 Duke A



#### **Global Health**

Lee AI. Anesthesiology 2017:127:614-62-

Impact and Cost-Effectiveness

- Background
  - 5 year partnership between Kybele and Ghana health service
- Cost Effectiveness Analysis
   Incremental cost effectiveness ratio (ICER)
- · Results
  - Maternal mortality ratio decreased by 22% (236 deaths averted)
  - Still birth decreased by 52% (129 still births averted)

- ICER: \$ 158 (95% CI: 129, 195) man DM. PLoS One 2017;12:e0180929

**U Duke** Anesthesiol

# Things to do ..

- · Incorporate TXA as an adjunct in your transfusion protocol
- · Use bromocriptine for women with peripartum cardiomyopathy
- Institute safety bundles on your unit
- · Educate, reduce and individualize post-discharge opioid prescriptions
- Consider (and study) DPE for labor analgesia
- · Use neuraxial techniques to facilitate ECV
- · Get Involved/ support Global Health

U Duke Anesthesiolog



Extraordinary care through a unique culture of innovation, education, research, and professional growth.



# Saturday, March 16, 2019

# Session VII: Obstetrical Hemorrhage Update Moderator: Andrea Traynor

**Optimal Uterotonic Administration to Prevent and Treat Uterine Atony** *Lawrence Tsen, M.D.* 

**Obstetrical Management of Post-Partum Hemorrhage** *Maurice L. Druzin, M.D.* 

**Transfusion Practices for Obstetric Hemorrhage: What's the latest?** *Anil K Panigrahi, M.D., Ph.D.* 

**Pharmacological Management of Obstetric Hemorrhage** *Alexander Butwick, M.B.,B.S., FRCA, M.S.* 

## Optimizing Uterotonic Agent Administration to Prevent and Treat Uterine Atony

#### SOAP Sol Shnider Obstetric Anesthesia Meeting, 2019

Lawrence C. Tsen, MD Department of Anesthesiology, Perioperative and Pain Medicine Director of Anesthesia, Center for Reproductive Medicine Associate Director, Center for Professionalism and Peer Support Brigham & Women's Hospital Associate Professor in Anaesthesia, Harvard Medical School

# Uterotonic Agents: Learning Objectives

Upon Completion of this Learning Activity, Participants Should Be Able To:

- Evaluate the role of oxytocin and alternative uterotonic agents in promoting uterine tone
- Investigate the mechanisms by which uterine tone is augmented
- Identify an algorithm to optimize uterotonic agent use to prevent and treat uterine atony

# Optimizing Uterotonic Agent Use

- THEORY
- INVESTIGATION
- NEWS FLASH

No Disclosures

# Optimizing Uterotonic Agent Use



# Theory: Uterotonic Agent Use is Variable

# Alternative Uterotonic Agent Use

## Patterns of Alternative Uterotonic Agents

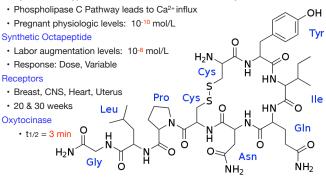
Premier Database: 2,180,916 Deliveries Mixed effects, logistic regression Patient and hospital characteristics

#### Frequency

Mean: **7.1%** (IQR 5.2-10.8%) Range: 1.7% (0.12%) to 25% (1.28%)

# Use not explained by: patient or hospital characteristics, delivery mode, medical or obstetric conditions, or year

Bateman B, Tsen LC, Liu J, Butwick AJ, Huybrechts KF. Patterns of second-line uterotonic use in large sample of hospitalizations for childbirth in the United States: 2007-2011. Anesth Analg 2014 Dec; 119(6):1344-9


- 1. METHERGINE
- Methylergonovine Maleate 0.2 mg IM
- 2. HEMABATE • Carboprost Tromethamine 0.25 mg IM
- Cytotec
   Misoprostol 800 -1000 mcg Rectal or 600 mcg Buccal

# Investigation: Pharmacology

# Oxytocin

# Natural Nonapeptide

· Synthesized Hypothalamus, Secreted Posterior Pituitary



# Mechanism: Oxytocin

# 30x increase (8x sensitivity) with gestational age

200x increase in myometrium; numerou: few lower segment and cervical

- 4 Mechanisms for Uterine Contractility
- Inosital Triphosphate (InsP3; Ca<sup>2+</sup>)
- Voltage Gated Depolarization (Ca<sup>2+</sup>)
- Mitogen-activated Protein Kinase (PG)
- Rho-kinase Protein Kinase (PG)
- Oxy Contraction: Frequency, Amplitude, Duration



Vrachnis N. et al. Int J Endocrinology 2011 Joyce KRS, et al. Reprod Sci 2009;16:501-8 Magalhaes J et al. Reprod Sci 2009;16:510-8 Robinson CR, et al. Am J Obstet Gynecol 2003;188:497-502

Ca2

MLCK-

**Myometrial** 

contractio

# Oxytocin Receptors

Desensitization with continuous oxytocin exposure

- · Occurs via: Phosphorylation, Internalization, Alteration of mRNA levels
- · Lasts for hours to days
- Time and Concentration Dependent

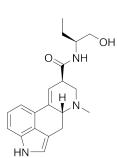
| Study    | Model | Time     | Concentration          |
|----------|-------|----------|------------------------|
| Joyce    | Rat   | 1 hrs    | 10 <sup>-8</sup> mol/L |
| Robinson | Human | 3 hrs    | 10 <sup>-8</sup> mol/L |
| Phaneuf  | Human | 4, 6 hrs | 10 <sup>-8</sup> mol/L |

Vrachnis N. et al. Int J Endocrinology 2011 Joyce KRS, et al. Reprod Sci 2009;16:501-8 Phaneuf S, et al. Hum Reprod Update 1998;4:625-33 Robinson CR, et al. Am J Obstet Gynecol 2003;188:497-502

# Methylergonovine (Methergine)

#### Natural Ergot Alkaloid

- Fungus on Rye, Morning Glory
- · Chemically similar to LSD


#### Receptors

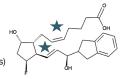
- Uterus, Blood Vessels
- 5-HT2a Serotonin
- · Dopaminergic, Alpha Adrenergic

Bioavailability (IM = 78%) Hepatic Metabolism and Excretion

Contraindicated

- · Hypertension, Preeclampsia
- · HIV+ protease inhibitors



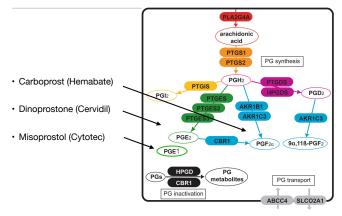

# Carboprost (Hemabate) + Misoprostol (Cytotec)

#### Natural Prostaglandins

- · Synthesized in Most Tissues and Organs
- Nucleated cells produce from arachidonic acid
- All contain 20 Carbon Atoms + 5 Carbon Ring
- Letter (Ring Structure) + Number (Double Bonds)

## Synthetic Prostaglandins

- F2a and E2, Corey, 1969: Japan Prize 1989
- Aspirin inhibit Synthesis, 1971: Nobel Prize 1982 Receptors
- · Platelets, Endothelium, Uterus, Mast Cells
- Platelet Aggregation, Vasodilation, Inflammation HÖ
- Paracrine (local active), Autocrine (on cell of synthesis) • t1/2 = short






K i

Misoprostol (PGE1)

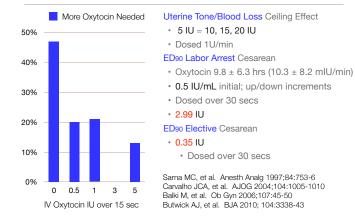
# Carboprost (Hemabate) + Misoprostol (Cytotec)



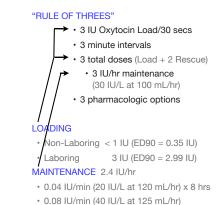
# News Flash: Algorithm for Uterotonic Agent Use

# A Stepwise, Standardized Algorithm Specific guidance

Laboring & Non-Laboring Women


# Emphasis

- Avoid Large & Rapid Bolus Doses
- Initial Infusion + Maintenance
- Early Consideration of Alternatives


#### **Rescue Options**

- Methylergonovine Maleate 0.2 mg IM
- · Carboprost Tromethamine 0.25 mg IM
- Misoprostol 800 -1000 mcg Rectal

# Investigation: Oxytocin is Overdosed

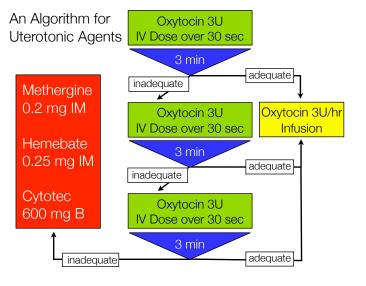


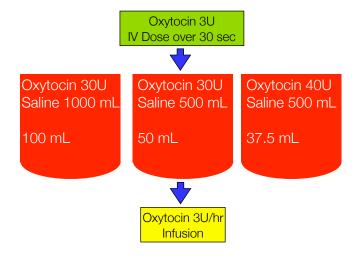
# News Flash: Algorithm for Uterotonic Agent Use



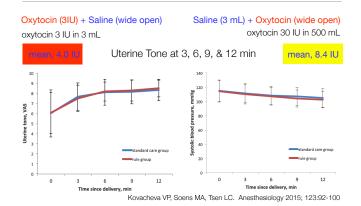
Tsen LC, Balki M. Int J Obstet Anesth. 2010 Jul;19(3):243-5.

Kovacheva VP, Soens MA, Tsen LC. Anesthesiology 2015;123:92-100


# News Flash: Algorithm for Uterotonic Agent Use


# OXYTOCIN "RULE OF THREES"

- 3 IU Oxytocin Load/ 30 secs
- 3 minute intervals
- 3 total doses (Load + 2 Rescue)
- 3 IU/hr maintenance (30 IU/L at 100 mL/hr
  3 pharmacologic
- options


Balki M, et al. Reprod Sci 2010; 17:269-77 Tsen LC, Balki M. IJOA 2010;19:243-5 Balki M, Tsen LC. Int Anesth Clinics 2014

- 1. METHERGINE
  - Methylergonovine Maleate 0.2 mg IM
    Ergot Derivative
  - Avoid if Hypertension/Eclampsia
    20 min interval; repeat to 1 mg
  - 2. HEMABATE
  - Carboprost Tromethamine 0.25 mg IM
    Prostaglandin F2alpha
  - Avoid if Asthma?
  - 1.5-3.5 hr intervals; total 12 mg, 2 days
    20 min interval; repeat to 1 mg
  - 3. Cytotec
     Misoprostol 800 -1000 mcg Rectal or 600 mcg Buccal
  - Prostaglandin E1 Analog
  - FDA for NSAID Gastric Ulcer Reduction
    Terminal Half-life 20-40 min





# News Flash: An Algorithm for Uterotonic Use



Summary: Optimizing Uterotonic Agent Use

# THEORY

• Uterotonic Agent Use is Variable?

# **INVESTIGATION**

Mechanisms Assist Overdosed!

# **NEWS FLASH**

- Avoid "rapid IV push" doses
- Rule of Three's
- 3 IU doses, 3 min, 3 doses, 3 IU maintenance
- · Limit reliance on single agent

Questions



Maurice L. Druzin, MD Professor and Vice-Chair Department of Obstetrics and Gynecology Division of Maternal-Fetal Medicine Stanford University School of Medicine Lucile Packard Children's Hospital Stanford

#### I have no financial disclosures

# REFERENCES

- Up-To-Date January 2018
- Contemporary OBGYN, March 13, 2018
- ACOG Practice Bulletin, Number 183, October 2017 Postpartum Hemorrhage
- Obstetrics and Gynecology, Vol. 130, No. 4, October 2017
- California Maternal Quality Care Collaborative (CMQCC) Postpartum Hemorrhage, 2.0, Toolkit, 2015
- Global Outreach Mobile Obstetrics Medical Simulation (GO MOMS)
   www.eomomseoeyns.com

World Health Organization (WHO), 2012

# Learning Objectives

- 1. To outline a stepwise obstetrical approach to post-partum hemorrhage.
- 2. To describe minimally invasive techniques to address post-partum hemorrhage.
- 3. To describe surgical interventions for control of post-partum hemorrhage.

# Executive Summary - WHO 2012

- Postpartum Hemorrhage (PPH) is commonly defined as a blood loss of 500 ml or more within 24 hours after birth.
- EBL of > 500 mL an "alert line"
- > 1000 mL an "action line" (Severe PPH)
- PPH is the leading cause of maternal mortality in low-income countries and the primary cause of nearly one quarter of all maternal deaths globally.
- Most deaths resulting from PPH occur during the first 24 hours after birth.
   The majority of these could be avoided through the use of prophylactic uterotonics during the third stage of labour and by timely and appropriate management.

# **DEFINITION ACOG 2017**

Maternal hemorrhage, defined as:

A cumulative blood loss of greater than or equal to 1,000 ml

OR

Blood loss accompanied by signs or symptoms of hypovolemia;

within 24 hours after the birth process

#### MORBIDITY FROM HEMORRHAGE

Hemorrhage that leads to blood transfusion is the leading cause of **severe maternal morbidity** in the United States closely followed by disseminated intravascular coagulation.

In the United States, the rate of postpartum hemorrhage increased **26%** between 1994 and 2006 primarily because of increased rates of **atony**.

# MORBIDITY

Additional important secondary sequelae from hemorrhage exist and include:

- ✓ Adult respiratory distress syndrome(ARDS)
- ✓ Shock
- ✓ Disseminated Intravascular Coagulation(DIC)
- ✓ Acute renal failure(ARF) (AKI)
- ✓ Loss of fertility
- ✓ Pituitary necrosis (Sheehan syndrome)

# MORBIDITY FROM HEMORRHAGE

In contrast, **maternal mortality** from postpartum obstetric hemorrhage has **decreased** since the late 1980s and accounted for slightly more than 10% of maternal mortalities (approximately 1.7 deaths per 100,000 live births) in 2009.

This observed decrease in mortality is associated with **Increasing** rates of transfusion and peripartum hysterectomy.

# Teamwork!!!!

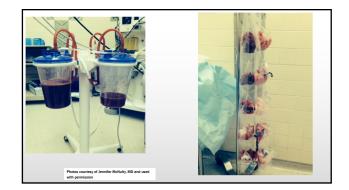
- Obstetrics+Nursing+ Anesthesiology
- Mutual respect
- Huddle early and often
- Closed loop communication

# Example of Risk Assessment Tool

| Low Risk                                    | Medium Risk                                                                                                                                      | High Risk                                          |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Singleton Pregnancy                         | Prior Cesarean or uterine surgery                                                                                                                | Previa, accrete, increta, percreta                 |
| Less than four previous<br>deliveries       | More than four previous deliveries                                                                                                               | Hematocrit <30                                     |
| Unscarred uterus                            | Multiple gestation                                                                                                                               | Bleeding at admission                              |
| Absence of postpartum<br>hemorrhage history | Large uterine fibroids                                                                                                                           | Known coagulation defect                           |
|                                             | Chorioamnionitis                                                                                                                                 | History of postpartum hemorrhage                   |
|                                             | Magnesium sulfate use                                                                                                                            | Abnormal vital signs (tachycardia and hypotension) |
|                                             | Prolonged use of Oxytocin                                                                                                                        |                                                    |
| obstetric hemorrhage versio                 | grew D, Shields L, Main E, Cape V, editors. Imj<br>n 2.0. A California Quality Improvement Toolk<br>acramento (CA); California Department of Pul | tit. Stanford (CA); California Maternal            |

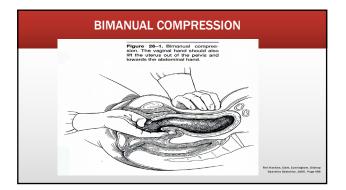
| Etiolo | Box 1.<br>gy of Postpartum Hemorrhage                                                                                                                                                                                                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Box 1. Etiology of Postpartum Hemorrhage 🗢                                                                                                                                                                                           |
|        | Primary:<br>• Uterine atony:<br>• Lacerations<br>• Retained placenta<br>• Abnormally adherent placenta (accreta)<br>Defects of coagulation (eg. disseminated intravascular<br>coagulation)*<br>Uterine inversion                     |
|        | Secondary:<br>• Subinvolution of the placental site<br>• Retained products of conception<br>• Indection<br>• Inherited coagulation defects (eg, factor deficiency<br>such as von Willebrand)<br>************************************ |

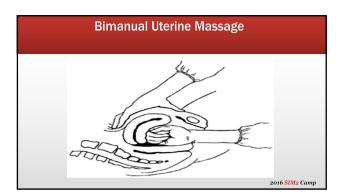
| iology                                                                                                                                                       | Primary Problem                                                                                                                                                                                         | Risk Factors, Signs                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| bnormalities of uterine contraction—atony                                                                                                                    | Atonic uterus                                                                                                                                                                                           | Prolonged use of oxytocin<br>High parity<br>Chorioamnionitis<br>General anesthesia                                                      |
|                                                                                                                                                              | Over-distended uterus                                                                                                                                                                                   | Twins or multiple gestation<br>Polyhydramnios<br>Macrosomia                                                                             |
|                                                                                                                                                              | Fibroid uterus                                                                                                                                                                                          | Multiple uterine fibroids                                                                                                               |
|                                                                                                                                                              | Uterine inversion                                                                                                                                                                                       | Excessive umbilical cord traction<br>Short umbilical cord<br>Fundal implantation of the placenta                                        |
| Genital tract trauma                                                                                                                                         | Episiotomy<br>Cervical, vaginal, and<br>perineal lacerations<br>Uterine rupture                                                                                                                         | Operative vaginal delivery<br>Precipitous delivery                                                                                      |
| Retained placental tissue                                                                                                                                    | Retained placenta<br>Placenta accreta                                                                                                                                                                   | Succenturiate placenta<br>Previous uterine surgery<br>Incomplete placenta at delivery                                                   |
| Abnormalities of coagulation                                                                                                                                 | Preeclampsia<br>Inherited clotting factor deficiency<br>(von Willebrand, hemophilia)<br>Severe infection<br>Amniotic Iluid embolism<br>Excessive crystalloid replacement<br>Therapeutic anticoagulation | Abnormal bruising<br>Petachia<br>Fetal death<br>Placental abruption<br>Fever, sepsis<br>Hemorrhage<br>Current thromboembolism treatment |
| Modified from New South Wales Ministry of Health<br>(PPH). Policy Directive. North Sydney: NSW Ministr<br>PD2010_064.pdf. Retrieved July 24, 2017. Copyright | v of Health; 2010, Available at: http://www                                                                                                                                                             | ind management of postpartum haemorrhage<br>1.health.nsw.gov.au/pds/ActivePDSDocuments/                                                 |
|                                                                                                                                                              |                                                                                                                                                                                                         | Ref: ACOG Practice Bulletin                                                                                                             |
|                                                                                                                                                              |                                                                                                                                                                                                         | 183. October 2017                                                                                                                       |

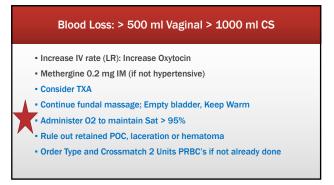

| Maternal Early Wa                                                                                                                                                                                                                                                                                                                                                               | rning Criteria                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| FIGURE 1<br>Maternal early warning criteria                                                                                                                                                                                                                                                                                                                                     | _                                                                              |
| Systolic BP (mm Hg)<br>Diastolic BP (mm Hg)<br>Heart rate (beats per min)<br>Respiratory rate (breaths per min)<br>Oxygen saturation on room air, at sea<br>Oliguria, mL/hr for ≥2 hours<br>Maternal agitation, confusion, or unr<br>with preeclampsia reporting a non-<br>shortness of breath<br>Early warning system proposed by National Partnership I<br>BP totoo preserve. | <35<br>esponsiveness; Patient<br>remitting headache or<br>for Maternal Safety. |

Quantification of Blood Loss: QBL

**DENIAL leads to DELAY** 



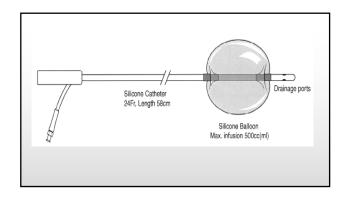


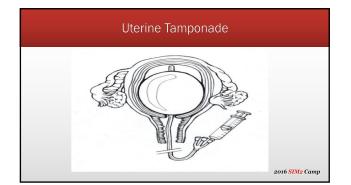

|                  | ne Atony<br>nt cause of PPH |  |
|------------------|-----------------------------|--|
| Rist             |                             |  |
| Advanced age     | Oxytocin                    |  |
| Multiparity      | Uterine                     |  |
| Chorioamnionitis | Overdistension              |  |
| ■MgSO4           | Abnormal labor              |  |
|                  |                             |  |

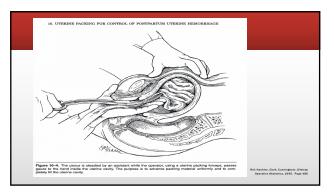






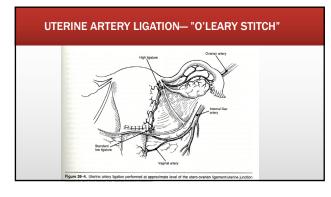

# Blood Loss: > 1000 - 1500 ml or greater

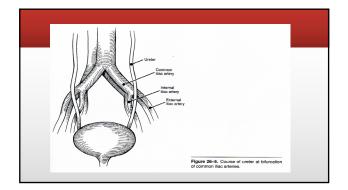

- CALL FOR EXTRA HELP
- Hemabate 250 mcg IM
- Misoprostol 800-1000 mcg PR
- Tranexamic Acid within <u>3 hours</u>
- To OR (if not there);
- Activate Massive Hemorrhage Protocol
- TRANSFUSE AGGRESSIVELY
- RBC:FFP:Plts 6:4:1 or 4:4:1


#### Management of Uterine Atony if **Bimanual Compression fails**

- Tamponade/Packing
- Uterine Artery Ligation
- B- Lynch Suture (Brace)
- Hypogastric Artery (internal iliac) Ligation
- Hysterectomy
  Supracervical
  Total
- Angiography
- Mast suit

Table 4. Tamponade Techniques for Postpartum Hemorrhage Technique Comment Commercially available intrauterine balloon tamponade devices Inserted transcervically or through cesarean incision; has an exit port for blood drainage Inflated with 300–500 mL of - Bakri Balloon saline Double Balloon: maximum rec-ommended fill volumes are 750 mL for the uterine balloon and 300 mL for the vaginal balloon. - ebb uterine tamponade system Foley catheter Insert one or more 60 mL bulbs and fill with 60 mL of saline. 4-inch gauze, can be soaked with 5,000 units of thrombin in 5 mL of saline then insert from one cormua to the other with ring forceps. Uterine packing Ref: ACOG Practice Bulletin #183, October 2017, Replaces Practice Bulletin 76, October 2006

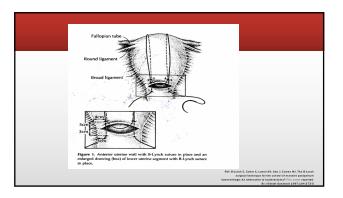


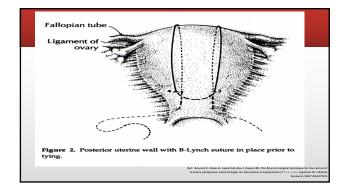



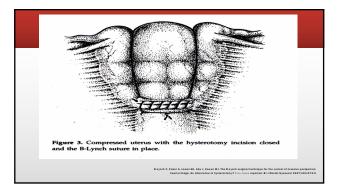


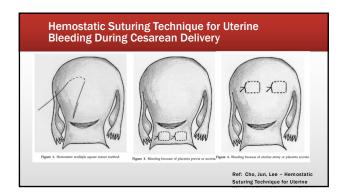

|                             |                                                                                                                              | -          |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|------------|
| Table 3. Surgical Mar       | agement of Postpartum Hemorrhage                                                                                             |            |
| Technique                   | Comment                                                                                                                      |            |
| Uterine curettage           |                                                                                                                              |            |
| Uterine artery ligation     | Bilateral; also can ligate uteroovarian vessels                                                                              | <b>}</b> = |
| B-Lynch suture              |                                                                                                                              |            |
| Hypogastric artery ligation | Less successful than earlier thought; difficult technique; generally reserved for practitioners experienced in the procedure |            |
| Repair of rupture           |                                                                                                                              | 1          |

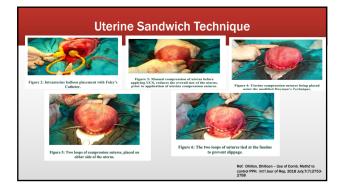
| UTERINE CURETTAGE                  |  |
|------------------------------------|--|
| Unite Transformer and Participants |  |





# Perform B-Lynch within an hour


- Among 211 women treated with B-Lynch sutures
- Hysterectomy rate was 16% if done within
   1 hour of delivery
- Hysterectomy rate was 42% with a delay of 2-6 hours


Move along a plan! Ref: Kayem G, Kurinczuk JJ, Alfirevic Z,





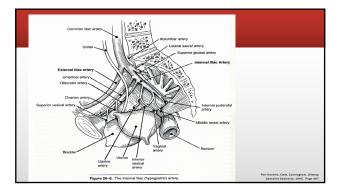


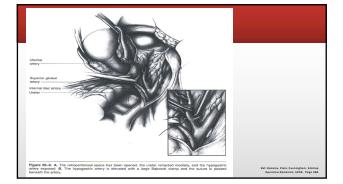


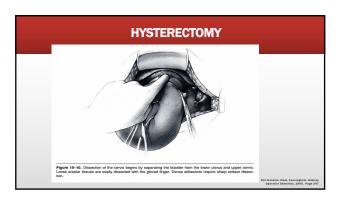


| American Jou                                                                                                                                                                                                                                                                                                                                | urnal of OBGYN                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residents' Papers                                                                                                                                                                                                                                                                                                                           | www.AJOG.org                                                                                                                                                                                                 |
| The uterine sandwich for persis<br>combining the B-Lynch comprese                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |
| and an intrauterine Bakri balloo<br>Wendy L. Nelson, MD; John M. O'Brien, MD<br>ORJECTIVE: The objective of the study was to evaluate the effective-                                                                                                                                                                                        | n                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                             | (range 20 1% to 28%). The balloon was in place for a median duration of 11hours (range 10-24 hours). The median volume initused into the water balloon was 100 m (range 60 - 250 m). No complications were   |
| Wendy L. Nelson, MD; John M. O'Brien, MD<br>ORJECTIVE: The objective of the study was to evaluate the effective-<br>ness of a combination of surgical interventions for control of postpar-<br>tum hemorthrage.<br>STUDY DESIGN: A cessram delivery, patients with presistent blending<br>time the administration of ouppoints were treated | (range 20.1% to 28%). The balloon was in place for a median duration of 11houz (range 10-24 houz). The median volume inituad into the balloon was 100 mL (range 60- 250 mL). No complications were observed. |
| Wendy L. Nelson, MD; John M. O'Brien, MD<br>OBJECTIVE: The objective of the study was to evaluate the effective-<br>ness of a combination of surgical interventions for control of postpar-<br>tum hermitage.<br>STUDY DESIGNE: At cesarean delivery, patients with persistent biedding                                                     | (range 20 1% to 28%). The balloon was in place for a median duration of 11hours (range 10-24 hours). The median volume initused into the water balloon was 100 m (range 60 - 250 m). No complications were   |

| Research                                                                                                                                                                                                                                                  | www.AJOG.org                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBSTETRICS<br>The combination of intrautering<br>and the B-Lynch procedure for<br>of severe postpartum hemorrhi<br>Ake Dimer, Nik Gender Omseyn MD, Niemis Nölkei,<br>Thiery Semville, MD; Peter Glosemeyer, MD; Wenser Dield, M                          | the treatment<br>age<br>,MD; Manuela Lotz, MD;                                                                                                                                                                                                                   |
| OBJECTIVE: To evaluate intrauterine balloon tamponade with or with-<br>out B-Lynch sutures in avoiding postgartum hysterectomy in cases with<br>severe postgartum hernomage.<br>STUDY DESIGN: Retrospective analysis using all women delivering be-       | with the balloon and the B-Lynch suture. Therefore, 90% (n = 18) were<br>successfully treated with the balloon as part of the treatment. The bal-<br>loon tamponade was not successful in 2 cases. Four cases were treated<br>with memory indications a minimum. |
| tween January 2005 and July 2010 in our center. Prevention of hyster-<br>ectorry was the main outcome studied.<br>RESULTS: Twenty-four cases of severe postpartum hemorrhage or<br>curred in which medical treatment alone failed. In 20 cases, the Bakel | CONCLUSION: The Bakei balloon with or without B-Lynch sutures in a<br>stepwise approach is an effective option for the treatment of severe                                                                                                                       |


.





| Patient | Age<br>(years) | Ethnicity                      | Mode<br>of<br>delivery      | Parity | Risk<br>factor                              | Gestational<br>age<br>(weeks) | Suture             | Estimated<br>blood loss<br>(ml) | Bakri<br>balloon<br>volume (mi) | Units of<br>blood<br>transfused | FU<br>(mont |
|---------|----------------|--------------------------------|-----------------------------|--------|---------------------------------------------|-------------------------------|--------------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 1       | 16<br>33       | Black African<br>Black African | Emergency CS<br>Elective CS | 0<br>4 | PP<br>PP,<br>previous<br>uterine<br>rupture | 36<br>36                      | B-Lynch<br>B-Lynch | 2400<br>1000                    | 280<br>350                      | 4<br>0                          | 3<br>12     |
| 3       | 18             | Eastern<br>European            | Normal vaginal<br>delivery  | 0      | -                                           | 42                            | Hayman             | 2700                            | 300                             | 8                               | 3           |
| 4       | 27             | Black African                  | Elective CS                 | 0      | PP                                          | 39                            | Hayman             | 750                             | 200                             | 0                               | 32          |
| 5       | 36             | Eastern<br>European            | Elective CS                 | 3      | PP                                          | 36                            | Hayman             | 2000                            | 300                             | 3                               | 3           |
| 6       | 40             | White<br>Caucasian             | Elective CS                 | 1      | PP, accreta                                 | 37                            | Hayman             | 4000                            | 200                             | 9 (ICS)                         | 18          |
| 7       | 31             | White<br>Caucasian             | Elective CS                 | 1      | PP                                          | 37                            | Hayman             | 1500                            | 200                             | 2 (ICS)                         | 6           |
| 8       | 36             | Black African                  | Elective CS                 | 0      | PP                                          | 36                            | Hayman             | 1500                            | 200                             | 0 (ICS)                         | 12          |
| 9       | 27             | Turkish                        | Elective CS                 | 1      | PP                                          | 37                            | Hayman             | 4500                            | 300                             | 6                               | 3           |
| 10      | 26             | Somalian                       | Elective CS                 | 0      | PP                                          | 37                            | Hayman             | 950                             | 150                             | 0 (ICS)                         | 6           |
| 11      | 30             | White<br>Caucasian             | Elective CS                 | 0      | PP                                          | 38                            | Hayman             | 2000                            | 200                             | 2 (ICS)                         | 6           |

# Hypogastric Artery LIGATION

- Performed much less frequently than in the past.
- Purpose is to diminish pulse pressure of blood flow via internal iliac (hypogastric vessels).
- Practitioners are less familiar with this technique, and the procedure has been found to be considerably less successful than previously thought.







# **Summary of Recommendations and Conclusions**

- All obstetric care facilities should have guidelines for the routine administration of uterotonics in the immediate postpartum period.
- Uterotonic agents should be the **first-line** treatment for postpartum hemorrhage caused by uterine atony.
- The specific agent selected, outside of recognized contraindications, is at the health care provider's discretion because none has been shown to have greater efficacy than others for the treatment of uterine atony.

#### Summary of Recommendations and Conclusions

- When uterotonics and bimanual compression techniques fail to adequately control
  postpartum hemorrhage, prompt escalation to other interventions (such as tamponade or
  surgical techniques) and escalation of intensity of care and support personnel are indicated.
- Given the mortality reduction findings, Transxamic acid within 3 hours should be considered in the setting of obstetric hemorrhage when Initial medical therapy fails.
- Obstetrician-gynecologists and other obstetric care providers should work with their institutions to ensure the existence of a:

# 1) designated multidisciplinary response team,

2) staged postpartum hemorrhage protocol that includes guidelines for escalation of care, and

- 3) functioning massive transfusion protocol.

## **Summary of Recommendations and Conclusions**

 Management of postpartum hemorrhage should use a multidisciplinary and multifaceted approach that involves:

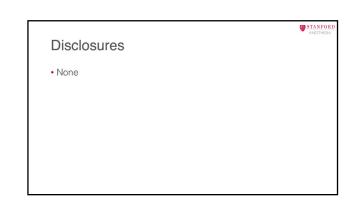
maintaining hemodynamic stability

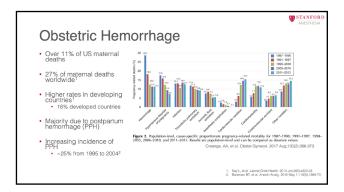
while simultaneously identifying and treating the cause of blood loss.

- Generally, in the treatment of postpartum hemorrhage, less invasive methods should be used initially if possible, but if unsuccessful, preservation of life may require more aggressive interventions including hysterectomy.
- When a massive transfusion protocol is needed, fixed ratios of packed red blood cells, fresh frozen plasma, and platelets should be used.

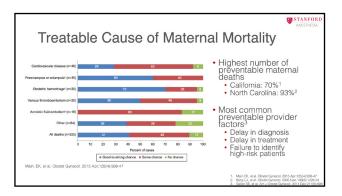
# DO NOT DENY THE DIAGNOSIS OF PPH DO NOT DELAY TREATMENT OF PPH

| DENIAL                                                                             | DELAY              |
|------------------------------------------------------------------------------------|--------------------|
|                                                                                    |                    |
| FIGURE 1<br>Maternal early warning criteria                                        |                    |
| Systolic BP (mm Hg)                                                                | <90 or >160        |
| Diastolic BP (mm Hg)                                                               | >100               |
| Heart rate (beats per min)                                                         | <50 or >120        |
| Respiratory rate (breaths per min)                                                 | <10 or >30         |
| Oxygen saturation on room air, at sea leve                                         | el, % <95          |
| Oliguria, mL/hr for $\geq 2$ hours                                                 | <35                |
| Maternal agitation, confusion, or unrespon                                         | nsiveness; Patient |
| with preeclampsia reporting a non-remit                                            | tting headache or  |
| shortness of breath                                                                | -                  |
| Early warning system proposed by National Partnership for Ma                       | aternal Safety.    |
| BP, blood pressure.                                                                |                    |
| Arona. Triggers, bundles, protocols, and checklists for obstetric safety. Am J Obs | stet Gynecol 2016. |



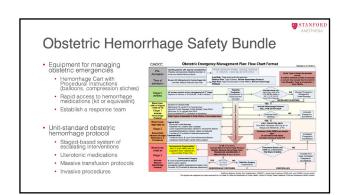


4

# Transfusion Practices for Obstetric Hemorrhage: What's the latest?

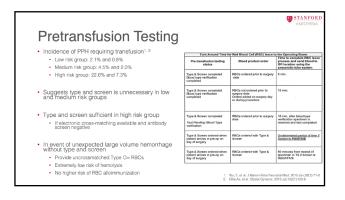

Anil K. Panigrahi, MD, PhD Clinical Assistant Professor Departments of Anesthesiology, Perioperative and Pain Medicine and Pathology, Division of Transfusion Medicine

STANFORD






STANFOR






- Risk Assessment and Pretransfusion Testing
- Recommendations for Massive Transfusion
- Patient Blood Management in Obstetrics



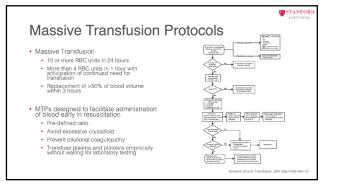
| Low<br>(Clot only)           | Medium<br>(Type and Screen)                | High<br>(Type & Crossmatch)                   |
|------------------------------|--------------------------------------------|-----------------------------------------------|
| No previous uterine incision | Prior cesarean birth(s) or uterine surgery | Placenta previa, low lying placenta           |
| Singleton pregnancy          | Multiple gestation                         | Suspected placenta accreta, percreta, increta |
| ≤4 previous vaginal births   | >4 previous vaginal births                 | Hematocrit <30 AND other risk factors         |
| No known bleeding disorder   | Chorioamnionitis                           | Platelets <100,000                            |
| No history of PPH            | History of previous PPH                    | Active bleeding (greater than show) on admit  |
|                              | Large uterine fibroids                     | Known coagulopathy                            |

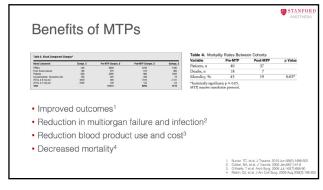


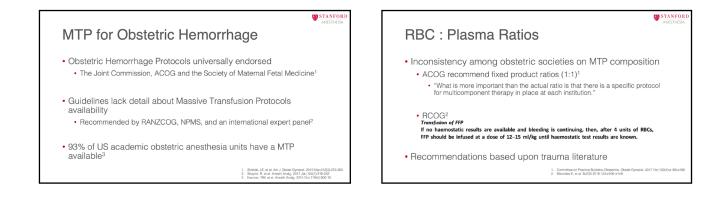


# Insufficient Supply of Compatible RBC

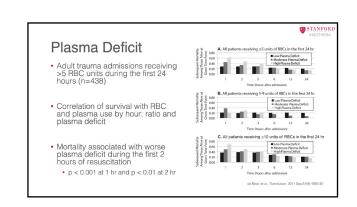
#### Supporting OB hemorrhage

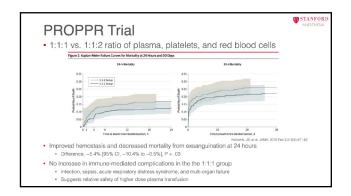

- Number of antigen-negative crossmatch-compatible units may be limiting
- Should not withhold RBC transfusion
- · Issue "least incompatible" RBC units
  - If 2 antibodies present, issue units which do not express the antigen corresponding to the more clinically significant antibody
- If transfusion of incompatible RBC units anticipated
  - Consult with transfusion medicine, hematology, MFM
  - Methylprednisone 1 mg/kg/day + IVIG 1g/kg/day x 3 days prior to procedure<sup>1</sup>

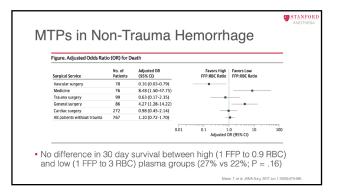

1. Grifols, JR, et al. Transfus Apher Sci. 2009 Apr;40(2):105

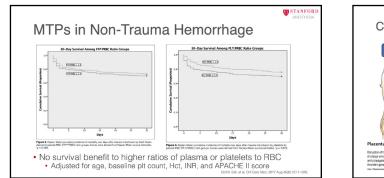

# Outline

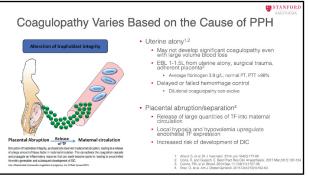
- Risk Assessment and Pretransfusion Testing
- Recommendations for Massive Transfusion
- Patient Blood Management in Obstetrics

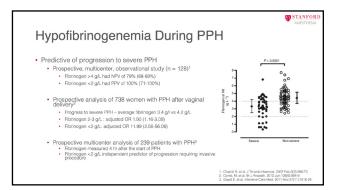

STANFORI

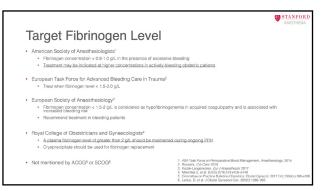




|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | ST A                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                | T Data – Ea                                                                                                                                                                                                                                            | arly Plasma                                                                                                                                                                                 | a                                                                                                                       |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        | any i laonie                                                                                                                                                                                | 4                                                                                                                       |
| E a cha an la caracter de                                                                                                                                                                                                      | for - to                                                                                                                                                                                                                                               | fuct 0 0 late and a                                                                                                                                                                         | and the second second second second                                                                                     |
|                                                                                                                                                                                                                                | ansfusion – withir                                                                                                                                                                                                                                     | n first 3-6 blood i                                                                                                                                                                         | inits and within                                                                                                        |
| 2.5 hrs of admi                                                                                                                                                                                                                | ssion                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                         |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                         |
| TABLE 2. Adjusted Odds Ratio<br>Transfusion Status at Entry to the                                                                                                                                                             | os (95% Confidence Intervals) Assoc<br>ne Analysis Cohort*                                                                                                                                                                                             | iating In-Hospital Mortality With E                                                                                                                                                         | arly Plasma and Platelet                                                                                                |
| Plasma and Platelets at Entry                                                                                                                                                                                                  | 6-h Mortality                                                                                                                                                                                                                                          | 24-h Mortality                                                                                                                                                                              | 30-d Mortality                                                                                                          |
| Fixshia and Fixtelets at Filtry                                                                                                                                                                                                |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                         |
|                                                                                                                                                                                                                                | 0.37 (0.19-0.73) p = 0.004                                                                                                                                                                                                                             | 0.47 (0.27-0.84) p = 0.01                                                                                                                                                                   | 0.44 (0.27-0.73) p = 0.002                                                                                              |
| At least 1 U plasma                                                                                                                                                                                                            | 0.37 (0.19-0.73) p = 0.004<br>0.49 (0.09-2.60) p = 0.402                                                                                                                                                                                               | 0.47 (0.27-0.84) p = 0.01<br>1.37 (0.44-4.24) p = 0.582                                                                                                                                     | 0.44 (0.27-0.73) p = 0.002<br>1.26 (0.42-3.74) p = 0.678                                                                |
| At least 1 U plasma<br>At least 1 U platelets<br>*A total of 619 patients entered into this                                                                                                                                    |                                                                                                                                                                                                                                                        | 1.37 (0.44-4.24) p = 0.582<br>products (including RBCs) within 2.5 hours of a                                                                                                               | 1.26 (0.42-3.74) p = 0.678<br>dmission. Odds ratios are adjusted for the                                                |
| At least 1 U plasma<br>At least 1 U platelets<br>A total of 619 patients entered into this<br>comulative sum of unit blood products transf                                                                                     | 0.49 (0.09-2.60) p = 0.402<br>malysis cohort having received 3 U to 6 U of blood                                                                                                                                                                       | 1.37 (0.44-4.24) p = 0.582<br>I products (including RBCs) within 2.5 bears of a<br>g sites (head, chest, and limb) and center difference                                                    | 1.26 (0.42-3.74) p = 0.678<br>dmission. Odds ratios are adjusted for the                                                |
| At least 1 U plasma<br>At least 1 U platelets<br>A total of 619 patients entered into this<br>contradius game of unit blood products transf<br>logistic models. <sup>25</sup>                                                  | 0.49 (0.09-2.60) p = 0.402<br>malysis cohort having received 3 U to 6 U of blood                                                                                                                                                                       | 1.37 (0.44-4.24) p = 0.582<br>I products (including RBCs) within 2.5 hours of a<br>g sites (head, chest, and limb) and center difference<br>del Junco, DJ, et al. J Trauma Acute            | 1.26 (0.42-3.74) p = 0.678<br>dmission. Odds ratios are adjusted for the<br>ses as a random intercept in the multilevel |
| At least 1 U plasma<br>At least 1 U platelets<br>At least 1 U platelets<br>At least 1 of 619 putiess entered into this<br>objective models. <sup>25</sup><br>Decreased 6-hour mort                                             | 0.49 (0.09-2.60) p = 0.402<br>malysis cohort having received 3 U to 6 U of blood<br>used at entry, ISS, entry time interval, age, bleeding<br>ality with increased ratios of                                                                           | 1.37 (0.44-4.24) p = 0.582<br>I products (including RBC3) within 2.5 hours of a<br>gates (head, ohest, and limb) and center difference<br>del Junco, DJ, et al. J Trauma Acure<br>Of:       | 1.26 (0.42-3.74) p = 0.678<br>dmission. Odds ratios are adjusted for the<br>ses as a random intercept in the multilevel |
| At least 1 U plasma<br>At least 1 U platelets<br>- A tetal of 19 paintes extend into this<br>complaine sam of wait blood products transl<br>logistic models. <sup>25</sup><br>Decreased 6-hour mont<br>- Plasma : RBCs (adjust | 0.49 (0.09-2.60) p = 0.402<br>mahysis obten having received 3 U to 6 U of blood<br>used at entry, ISS, entry time interval, age, bleeding<br>allity with increased ratios of<br>ed HR= 0.31; 95% CI, 0.16-0.58                                         | 1.37 (0.44–4.24) p = 0.582<br>I products (dictuling RBCs) which 2.5 hours of a<br>gates (bead, chest, and limb) and centre difference<br>del Junco, D.J. et al. J Treuma Acute<br>Df:<br>)) | 1.26 (0.42-3.74) p = 0.678<br>dmission. Odds ratios are adjusted for the<br>ses as a random intercept in the multilevel |
| At least 1 U plasma<br>At least 1 U platelets<br>- A tetal of 19 paintes extend into this<br>complaine sam of wait blood products transl<br>logistic models. <sup>25</sup><br>Decreased 6-hour mont<br>- Plasma : RBCs (adjust | 0.49 (0.09-2.60) $p$ = 0.402<br>analysis coords having received 3 U to 6 U of blood<br>social at entry, ISS, entry time interval, age, bleading<br>allity with increased ratios c<br>ad HR= 0.31; 95% Cl, 0.16-0.58<br>ited HR= 0.55; 95% Cl, 0.31-0.9 | 1.37 (0.44–4.24) p = 0.582<br>I products (dictuling RBCs) which 2.5 hours of a<br>gates (bead, chest, and limb) and centre difference<br>del Junco, D.J. et al. J Treuma Acute<br>Df:<br>)) | 1.26 (0.42-3.74) p = 0.678<br>dmission. Odds ratios are adjusted for the<br>ses as a random intercept in the multilevel |

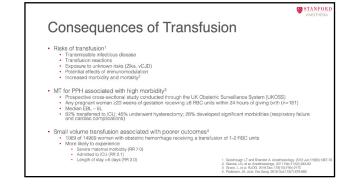


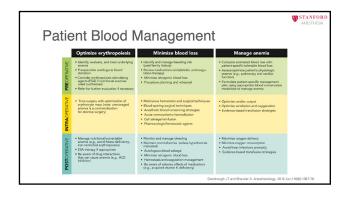



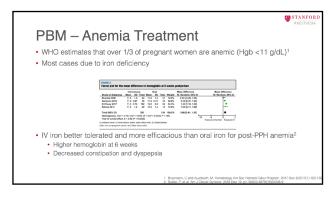


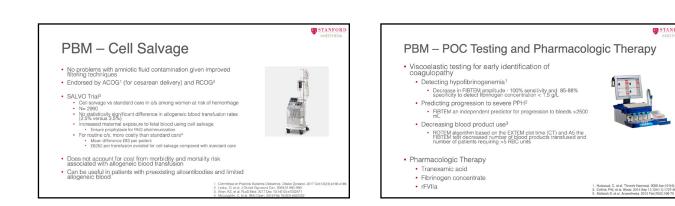






# Outline


STANFORI

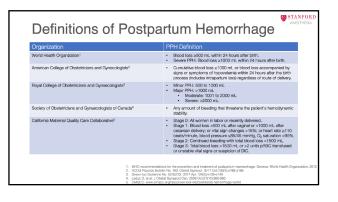
- Risk Assessment and Pretransfusion Testing
- Recommendations for Massive Transfusion
- · Patient Blood Management in Obstetrics

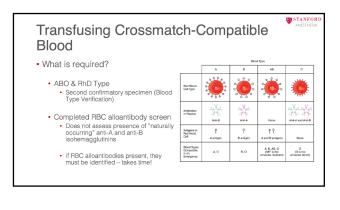


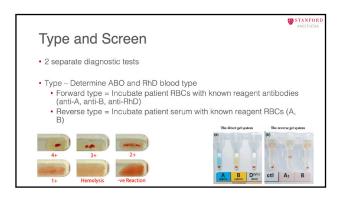


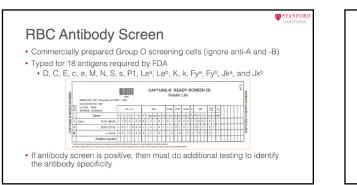





STANFORE


# Conclusions


- Type and Screen is sufficient for women at high risk of PPH
   When electronic cross-matching available
- In patients with RBC alloantibodies, extra time is required to obtain and prepare cross-match compatible blood
   Time required is dependent on number and specificity of antibodies
- Massive Transfusion Protocols should be available to all units treating patients with potential PPH
   The optimal ratio of RBC : plasma units when treating PPH is unclear


STANFORI

- Hypofibrinogenemia is strong predictor of severe PPH
   Studies are ongoing to determine the efficacy of early fibrinogen replace
- Patient Blood Management initiatives should be employed as part of routine obstetric care to avoid allogeneic blood transfusion and its associated morbidity and mortality risk



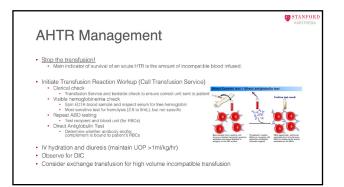


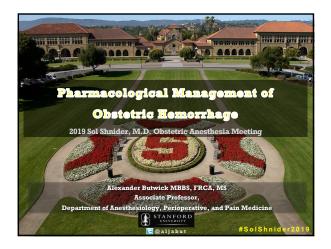






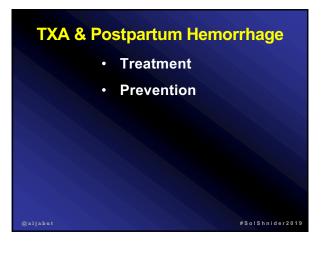
# STANFORD

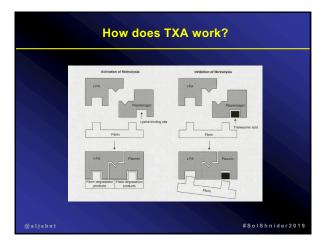

# Acute Hemolytic Transfusion Reactions


- Usually occur during or within 24 hours of transfusion
  - · Can be intra- or extravascular
  - Intravascular hemolysis more severe and usually associated with ABO incompatibility
     Anti-A, anti-B antibodies are IgM and can fix complement

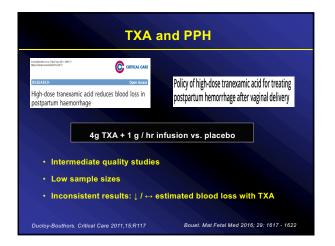
#### Signs and symptoms


- Fever and chills
   Most common presenting symptom (> 80%)
   Back or infusion site pain

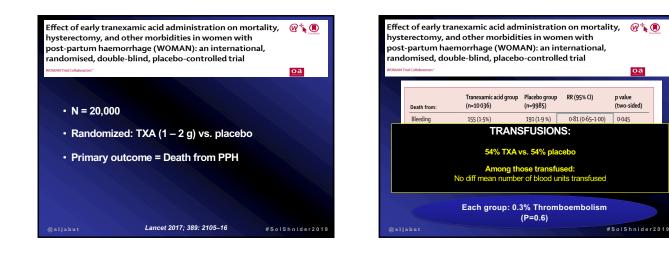

- Hypotension/shock
  Hemoglobinuria (may be first indication of hemolysis in anesthetized patients) DIC/increased bleeding (also important in anesthetized patients)
   Sense of "impending doom"

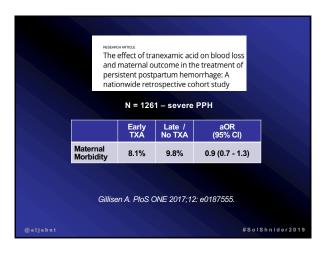




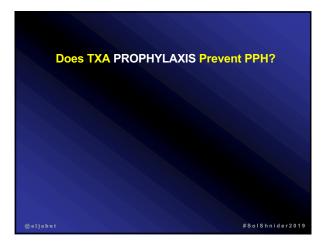






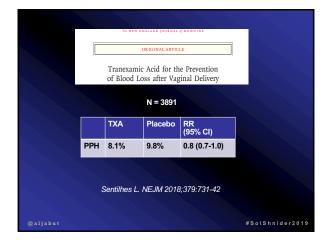





| Acid for the Highlights and                 | he Treatment<br>d Key Messages fro                                                                                             | nendation on 7<br>of Postpartum<br>m the World Healt                                                                                                                                                                                                   | Haemorrhage                                                                                                                                                                                                                    |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| October 2017                                | Recommendation                                                                                                                 |                                                                                                                                                                                                                                                        | www.mcsprogram.or                                                                                                                                                                                                              |
| WHO 2017 TXA<br>Recommendation<br>(updated) | Use TXA in all cases of<br>PPH, regardless of<br>whether the bleeding<br>is due to genital tract<br>trauma or other<br>causes. | Use TXA within 3 hours<br>and as early as possible<br>after onset of PPH. Do<br>not initiate TXA more<br>than 3 hours after birth,<br>unless being used for<br>bleeding that restarts within<br>24 hours of completing the<br>first dose (see dosing). | Fixed dose of I g in 10 mL<br>(100 mg/mL) IV at 1 mL per<br>minute (i.e., administered<br>over 10 minutes)<br>Second dose of 1 g IV if<br>bleeding continues after 30<br>minutes or if bleeding<br>restarts within 24 hours of |

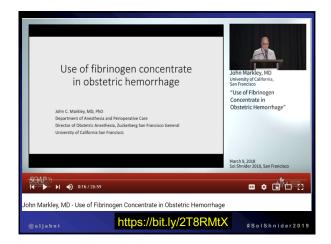


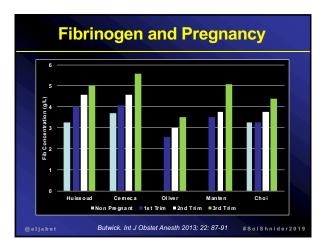


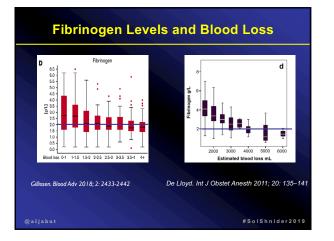

#### Does tranexamic acid prevent postpartum haemorrhage? A systematic review of randomised controlled trials K Ker, H Shakur, I Roberts Main results We found 26 trials including a total of 4191 women. Examination of the trial reports raised concerns about the quality of the data. <u>Eight trial reports contained identical or similar text</u> and there were important data inconsistencies in several trials. Two trials did not have ethics committee approval. Meta-analysis of baseline variables suggested that <u>randomisation was inadequate</u> in many trials. Conclusions There is no reliable evidence that TXA prevents

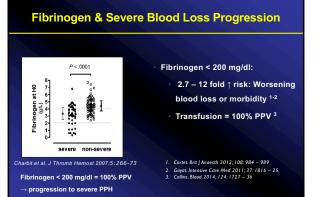
postpartum haemorrhage during childbirth. Many of the trials conducted to date are small, low quality and contain serious flaws.

BJOG 2016;123:1745-1752.


@aljabut

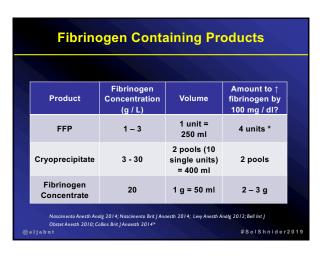

#SolShnider20







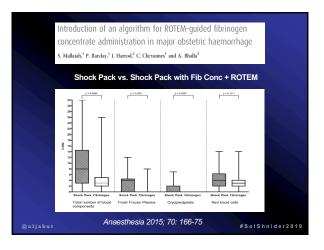



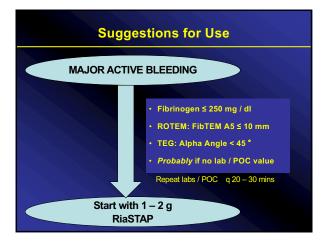


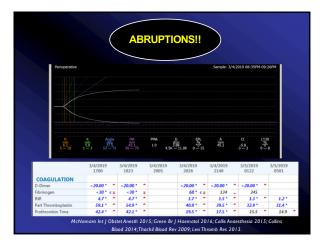



#SolShnider2019







# Fibrinogen Concentrate


- · Sterile,
- Preservative-free
- Lyophilized fibrinogen concentrate
- Each Vial: 900 1300 mg fibrinogen
- Dilute in 50 ml Sterile Water
- Give IV
- Not exceed 5 ml / min

| ptive treatment with fibr<br>rtum haemorrhage: rando                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| L. J. Wiklelse <sup>14</sup> , H. M. Edwands <sup>2</sup> , A. Afshan <sup>3</sup> , J. Stensballe <sup>4</sup> , J. Langhoff-Roos <sup>5</sup> , C. Albrechtsen <sup>3</sup> , K. Ekelund <sup>3</sup> ,<br>I. Hanke <sup>3</sup> , E. L. Secher <sup>3</sup> , H. F. Shanf <sup>5</sup> , L. M. Pedersen <sup>5</sup> , A. Troelstrup <sup>6</sup> , J. Lauenbarg <sup>3</sup> , A. U. Mitchell <sup>1</sup> ,<br>Fuhrmann <sup>1</sup> , J. Sware <sup>1</sup> , M. G. Madsen <sup>4</sup> , B. Bøcker <sup>3</sup> , A. M. Møller <sup>1</sup> and FIB-PPH trial group |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Brit J Anaesth 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17; 114 : 623-33                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 2g RiaSTAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vs. Placebo                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| RiaSTAP (n=123)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Placebo (n=121)                                                                                                                                                                                                     | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 1493 (489)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1426 (463)                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 4.5 (1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.5 (1.3)                                                                                                                                                                                                           | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22%                                                                                                                                                                                                                 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8%                                                                                                                                                                                                                  | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tum haemorrhage: rand<br>a <sup>th</sup> , H. Edwards, A. Atbaril, J. Stendo<br>U. Scherl, H. 5. Sant, L. M. Petersen, Y.<br>Brit J. Annesth 20:<br>2g RiaSTAP<br>RiaSTAP (n=123)<br>1493 (489)<br>4.5 (1.1)<br>20% | tum haemorrhage: randomized controlled trial <sup>†</sup> e <sup>10</sup> ; H. M. Edwards <sup>1</sup> , A. Afshari <sup>1</sup> , J. Sensballe <sup>1</sup> ; J. Langhoff-Roos <sup>5</sup> , C. Albrechtsen <sup>1</sup> , K. U. Scherl <sup>1</sup> , H. Shorf <sup>1</sup> , L. M. Medersm <sup>1</sup> , A. Indestru <sup>1</sup> , J. J. Soure <sup>1</sup> , M. Scherl <sup>1</sup> , A. M. Medel <sup>1</sup> and FI:B <sup>2</sup> HT unarbox <sup>1</sup> , S. M. Medel <sup>1</sup> , M. Steller <sup>1</sup> , A. M. Medel <sup>1</sup> and FI:B <sup>2</sup> HT unarbox <sup>1</sup> , S. M. Medel <sup>1</sup> , M. Steller <sup>1</sup> , A. M. Medel <sup>1</sup> and FI:B <sup>2</sup> HT unarbox <sup>1</sup> , S. M. Medel <sup>1</sup> , J. Soure <sup>1</sup> , M. Scherl <sup>1</sup> , B. Steller <sup>1</sup> , A. M. Medel <sup>1</sup> and FI:B <sup>2</sup> HT unarbox <sup>1</sup> , S. M. Medel <sup>1</sup> , M. M. M. Medel <sup>1</sup> , M. M. M. M. M. M. M. Medel <sup>1</sup> , M. M. M. M. Medel <sup>1</sup> , M. M |  |  |  |

|   | repl<br>a do<br>P. W.<br>C. Elt                   | Viscoelastometric-guided early fibrinogen concentrate<br>replacement during postpartum haemorrhage: OBS2,<br>a double-blind randomized controlled trial<br>P: W. Collins <sup>1,</sup> , R. Cannings-John <sup>2</sup> , D. Brynseels <sup>2</sup> , S. Malliaiah <sup>4</sup> , J. Dick <sup>2</sup> ,<br>C. Elton <sup>3</sup> , A. D. Weels <sup>2</sup> , J. Sanders <sup>9</sup> , N. Aswa <sup>2,1</sup> , Townson <sup>2</sup> , K. Hod <sup>3</sup> ,<br>J. E. Hall <sup>9</sup> and R. E. Collis <sup>3</sup> on behalf the OBS2 study team <sup>3</sup><br>Brit J Anaesth 2017; 119 : 411-21 |                                          |                 |  |  |  |
|---|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|--|--|--|
|   | F                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sed dose) vs. Place<br>I FlBtem A5≤15 mm |                 |  |  |  |
|   |                                                   | RiaSTAP (n=28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placebo (n=27)                           | Р               |  |  |  |
|   | Blood loss at study<br>drug delivery              | 1950 [1500 – 2280}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2000 [1700 – 2500]                       | -               |  |  |  |
|   | Transfusion Rate                                  | 53%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55%                                      | 0.9             |  |  |  |
|   | Number of units                                   | 1 [0 – 2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 [0-2]                                  | 0.45            |  |  |  |
|   | Blood loss within<br>24 hr of study<br>medication | 225 [100 – 341]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300 [60 – 800]                           | 0.6             |  |  |  |
| ¢ | )aljabut                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | #SolShnider2019 |  |  |  |









| OB Stat                                               | - Of American Advantage / Review / American     - Web American Advantage / Review / American Advantage / Review Advantage / American Advantage / Americ |                                                                                                             |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| All patients:<br>Atony<br>Prophylaxis                 | Alony prophylaxis: IV pilocin (for c/rection: 1-2 u; cumulative max dose = 5 u over 3-4 min) + pilocin Intuian for maintaining adequate tone     Fundal masage     Macaure blood loss - gravimetric + volumetric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |
| STAGE 1<br>Bleed+ AND<br>>500 ml VD or<br>>1000 mL CS | Large bore IV x 2     CEC / P1 / P11 / INK / Rbrinogen +/- POCT (IEG or KOTEM)     100% O: (non-rebreather facemask)     2 <sup>rd</sup> line uterotonic (methergine; hemobale; misoprastol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |
| STAGE 2<br>Bleed+ AND<br>EBL ≤1500 mL                 | Activate MTP or use TACG blood II immediately available     Move to OR II FPN post voginal delivery - repair tear; D&C UBT; embolization     Inaritives (Tacd artial of B&C/FFPN or goal-deceted using lobu/POCT) + Belmont     Consider early artificial line + A&G     Surgical intervention II c/section (inspect broad lig: B Lynch; UBT; Embolization)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pharmacological<br>Adjuncts:<br>• Fibrinogen<br>concentrate<br>(1-2g IV)                                    |
| STAGE 3<br>Bleed+ AND<br>EBL >1500 mL                 | Transluse (fixed ratio 88C:FFF.Ft or gool-directed using labs/POCT) + Belmont     Watch for acidosis / hypocalcemia / hyperholemia     Avoid hypothermia (use active warming)     Surgical intervention (laparotomy: 8 Lynch; UA ligation: hysterectomy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tranexamic acid     (1 g IV bolus over     10 min; if bleed+     after 30 min, then     give 1g IV over 8h) |

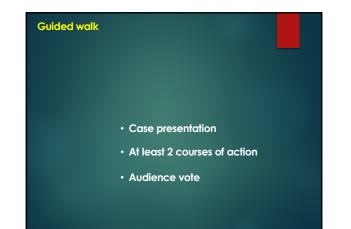




# Saturday, March 16, 2019

# Session VIII: Clinical Conundrums in Obstetric Anesthesia

Moderator/Lead: Alexander Butwick, M.B., B.S., FRCA, M.S.


**Expert Panel:** Lawrence Tsen, MD; Ashraf S. Habib, M.B.,B.Ch., M.Sc., M.S.N., FRCA; Edward T. Riley, M.D.; Jennifer M. Lucero, M.D., M.S.



# The EXPERTS

- Lawrence Tsen (Brigham and Women's)
- Ashraf Habib (Duke)
- Edward Riley (Stanford)
- Jennifer Lucero (UCSF)





# # Case 1: ThrombocytoPAINia

- ▶ 30 y/o G1P0 39 weeks
- Admitted Spontaneous Labor
- BMI 40
- Gestational Thrombocytopenia PLT count today = 50 x 10<sup>9</sup> / L
- She's requesting an epidural no prior anesthesia consultation

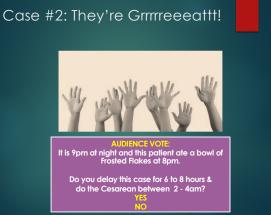
# Case 1: ThrombocytoPAINia

What do you do? 1. Perform an Epidural 2. Not Perform an Epidural

## Risk of epidural hematoma – Thrombocytopenic patients

- PLT count <100,000 + neuraxial block</p>
  - ▶ Systematic Review 951 patients
  - MPOG 573 patients

|                                     |           |     | Systematic R                                | eview D | ata                                           | MPOG D      | ata Combined wit                                | h System | atic Review Data                              |
|-------------------------------------|-----------|-----|---------------------------------------------|---------|-----------------------------------------------|-------------|-------------------------------------------------|----------|-----------------------------------------------|
| Platelet Range,<br>mm <sup>-3</sup> | n (%)     | Her | quency of Epi<br>natoma Requ<br>cal Decompr | iring   | 95% CI for Risk<br>of Epidural<br>Hematoma, % | n (%)       | Frequency of E<br>Hematoma Re<br>Surgical Decom | quiring  | 95% CI for Risk<br>of Epidural<br>Hematoma, % |
| 0-49,000                            | 12 (1)    |     | 0                                           |         | 0-25                                          | 27 (2)      | 0                                               | 1        | 0-11                                          |
| 50,000-69,000                       | 53 (6)    |     | 0                                           |         | 0-6                                           | 89 (6)      | 0                                               | 1        | 0-3                                           |
| 70,000-100,000                      | 764 (80)  |     | 0                                           |         | 0-0.4                                         | 1,286 (84)  | 0                                               |          | 0-0.2                                         |
| Total                               | 951 (100) |     | 0                                           |         |                                               | 1.524 (100) | 0                                               |          |                                               |


# # Case 1: ThrombocytoPAINia

- ▶ Epidural @ 3cm
- $\blacktriangleright$  Ob performs ARM  $\rightarrow$  pain is getting worse
- 3 epidural top-ups
- Pt still c/o right-sided pain
- OB calls c/section for failure to progress (7cm); fetal trace 'ok'
- Epidural top-up: 20 ml 2% lidocaine + epi + bicarb
  - inadequate block (T7 Left; L1 Right)

| What do you do?<br>• Take out catheter & do another block<br>• GA        | # Case 1: ThrombocytoPAINia          |  |
|--------------------------------------------------------------------------|--------------------------------------|--|
| <ul> <li>Take out catheter &amp; do another block</li> <li>GA</li> </ul> |                                      |  |
| <ul> <li>Take out catheter &amp; do another block</li> <li>GA</li> </ul> |                                      |  |
|                                                                          | Take out catheter & do another block |  |

| 199-2802(8 - see front matter<br>tep://dx.doi.org/10.1016/j.jee<br>DRIGINAL ARTIC<br>Risk factors:<br>o cesarean d<br>and meta-ana<br>A.E. Bauer, <sup>a</sup> J.A.<br>Department of Anesthe |                      | rsion of labor<br>sia: a systema<br>ational trials<br>n, <sup>b</sup> M.L. Greenfield<br>an Health System, Am 2 | epidural a<br>tic review               | 5                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|--|
|                                                                                                                                                                                              | Anal                 | gesic Top-ups                                                                                                   | •                                      |                      |  |
|                                                                                                                                                                                              |                      |                                                                                                                 |                                        |                      |  |
| study                                                                                                                                                                                        | Number of<br>Top-ups |                                                                                                                 | OR (95% CI)                            | %<br>Weight          |  |
| study<br>Campbell 2009                                                                                                                                                                       |                      |                                                                                                                 | DR (95% CI)<br>2.37 (1.60, 3.50)       | %<br>Weight<br>51.15 |  |
|                                                                                                                                                                                              | Top-ups              |                                                                                                                 |                                        |                      |  |
| Campbell 2009                                                                                                                                                                                | Top-ups<br>>0        |                                                                                                                 | 2.37 (1.60, 3.50)                      | 51.15                |  |
| Campbell 2009<br>Halpern 2009<br>Lee 2009                                                                                                                                                    | Top-ups<br>>0<br>>1  |                                                                                                                 | 2.37 (1.60, 3.50)<br>3.07 (1.38, 6.85) | 51.15<br>27.71       |  |





# Case #2: They're Grrrrreeeattt!

#### Practice Guidelines for Obstetric Anesthesia

An Updated Report by the American Society of Anesthesiologists Task Force on Obstetric Anesthesia and the Society for Obstetric Anesthesia and Perinatology\*

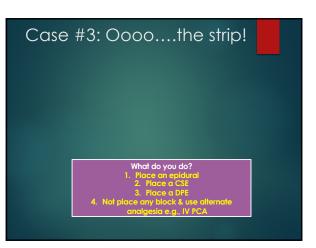
- Solid foods should be avoided in laboring patier
- The patient undergoing elective surgery:

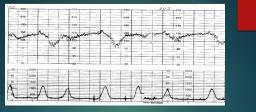
Fasting period for solids = 6 to 8hrs; depending on the type of food ingested (e.g., fat content)

Anesthesiology 2016; 124:270-300

Practice Guidelines for Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration: Application to Healthy Patients Undergoing Elective Procedures

An Updated Report by the American Society of Anesthesiologists Committee on Standards and Practice Parameters

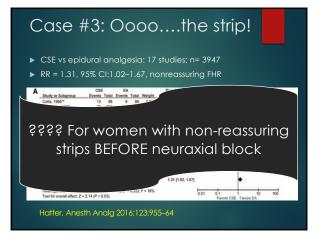

- A light meal or nonhuman milk up to 6 hrs before elective procedures requiring general anesthesia, regional anesthesia, or procedural sedation and analgesia.
- Additional fasting time (e.g., ≥8 hrs) [for] fried foods, fatty foods, or meat
- Since nonhuman milk is similar to solids in gastric emptying time, consider the amount ingested when determining an appropriate fasting period.


Anesthesiology 2017; 126: 376-393

# Case #3: Oooo....the strip!

- 32y/o G2P1 at 38wks underwent IOL and labor augmentation with oxytocin.
- ARM 1 hr ago
- Pain now 10/10; cervix: 70
- Now requesting an epidural

| 22 240         | 240           | 1240       | 003 210              |
|----------------|---------------|------------|----------------------|
| 210            | 210           | 210        | 210                  |
| 180            | 180           | -180       | 100                  |
| million 1      | William March | Hannan     | to a some maning     |
|                | 10 YA         | - 00       | 90 PX                |
|                | 60            | 60         | 60                   |
| 1 30 1 1 1 1 1 |               | 30         | 30                   |
| 00 2500        |               |            | 1 100 1 1 2500 1 1 1 |
| 0 2000         |               |            | 00 2000              |
| 0 1990         |               |            | 60 1505              |
| 0-n 1000 A     |               | A          | 8 1000 A             |
|                | A IIII        | 11/5       | 120 500              |
| STATE PARTY    | 1 - m         | 850-800028 | 2 - Jone - Jone      |






LATE DECELERATION: NICHD Workshop on Electronic Fetal Monitoring

- Symmetrical gradual decrease and return of FHR assoc with uterine contraction
- ► A gradual FHR decrease: onset the FHR nadir ≥30 secs
- Nadir of the deceleration after the peak of the contraction
   In most cases, the onset, nadir, and recovery of the deceleration
- occur after the beginning, peak, and ending of the contraction, respectively.

JOGNN, 37, 510-515; 20

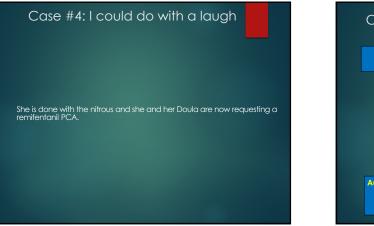


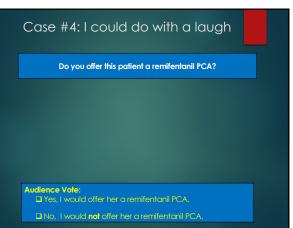
# Case #4: I could do with a laugh

- BMI 25; healthy with a reassuring airway exam
- She is requesting pain relief

## Case #4: I could do with a laugh




# Case #4: I could do with a laugh


Nitrous oxide: less effective than epidural labor analgesia<sup>1</sup>

- Side-effects: nausea, vomiting, dizziness, drowsiness <sup>1</sup>
- Satisfaction ? 1

|                                         | Nitrous use among<br>laboring women | Conversion rate to<br>neuraxial analgesia |
|-----------------------------------------|-------------------------------------|-------------------------------------------|
| Sutton (Stanford) <sup>2</sup>          | 3%                                  | 63%                                       |
| Richardson<br>(Vanderbilt) <sup>3</sup> | 1 <b>9</b> %                        | 40%                                       |

Anesth Analg 2014. 118: 153-167
 J Clin Anesth 2017. 40: 40-45
 Anesth Analg 2017; 124: 548-553





# **Remifentanil Labor Analgesia**

Melber AA. Remifentanil patient-controlled analgesia (PCA) in labour -in the eye of the storm. Anaesthesia 2019, 74, 277-279 (Editoria)

Wilson MJ. Intravenous remifentanil patient-controlled analgesia versus intramuscular pethidine for pain relief in labour (RESPITE): an open-label, multicentre, randomised controlled trial. Lancet 2018, 392: 662-72

Weibel S. Patient-controlled analgesia with remifertanil versus alternative analgesic methods for pain relief in labour. Cochrane Database of Systematic Reviews 2017, Issue 4. CD011989

Freeman LM. Patient controlled analgesia with remifentanil versus epidural analgesia in labour: randomised multicentre equivalence trial. BMJ 2015; 350: h846

# Case #4: I could do with a laugh



She is done with the nitrous and the remifentanil and now requests **real** analgesia.

You have heard from a colleague that Dural Puncture Epidurals (DPE) are now considered better than epidurals or CSEs.

Do you perform a DPE for this patient?

## Case #4: I could do with a laugh

Audience Vote: Yes, I would perform a DPE.

#### Case #4: I could do with a laugh



She is now postpartum and is requesting a postpartum tubal ligation. It is 10pm and the plan is to schedule the procedure at 8am the next morning

Do you pull the epidural, or utilize it the next morning for the tubal ligation?

#### Case #4: I could do with a laugh

#### Audience Vote:

- I would leave the catheter in tonight and utilize it the following morning for the PPTL.
- I would pull the catheter out tonight and perform a single shot spinal tomorrow marning.
- I would pull the catheter out tonight and do a GA tomorrow morning.

# Anesthesia for Tubal Ligations

- Survey: 26 US Fellowship Directors <sup>1</sup>
  - ▶ 58% keep epidural catheter for tubal
  - If no epidural, 96% single-shot spinal
- ▶ Failed Epidural top-up rates: 12-26% <sup>1-2</sup>
- RFs for failure: poor patient satisfaction; increased deliveryreactivation time; top-ups during labor<sup>2</sup>
- 1. McKensie. J Clin Anesth. 2017; 43:39-46 2. Powell. J Clin Anesth 2016; 35: 221-4.

# Case #5: A quickie

- G1P0: SVD 2 hr ago with an epidura
- RN took the epidural catheter out after delivery.
- Now has a retained placente
- OB calls patient uncomfortable; placenta 'not coming out'
- Asks if you can give 'some sedation' in the labor room to 'try again'....'it won't take long ©'

# Case #5: A quickie What do you do? 1. Say yes - give sedation 2. Say no - offer an alternative

# Case #5. A quickie

- You say no.
- OB not happy as another patient in labor (9cm)
- You want to do the case in the OR

# Case #5: A quickie What do you do? 1. Spinal 2. Epidural 3. CSE 4. MAC 5. GA

# Case #5. A 'not-so' quickie

- You do a spinal
- OB is 'tugging hard' on the placenta but 'thinks it's coming......'
- ► BP dropping; HR increasing
- Blood loss is 'estimated' ~ 1 L / 5 min
- ▶ What next?





# Sunday, March 17, 2019

# Session IX: Management Updates Safety Session (ABA Part 2 MOCA Patient Safety Credit) Moderator: Mark D. Rollins, M.D., Ph.D.

Anesthesia for Non-Obstetric Surgery During Pregnancy Gillian Abir, M.B., Ch.B., FRCA

**Eating During Labor and the "Full Stomach" Pre and Post-Delivery** *Atisa B Britton, M.D.* 

**Post-Partum Tubal Ligation: Optimal Anesthetic Technique and Timing** *Andrea J. Traynor, M.D.* 



# Non-obstetric Surgery during Pregnancy

GILLIAN ABIR, MBCHB, FRCA

CLINICAL ASSOCIATE PROFESSOR DEPARTMENT OF ANESTHESIOLOGY, PERIOPERATIVE AND PAIN MEDICINE STANFORD UNIVERSITY SCHOOL OF MEDICINE, CALIFORNIA, USA



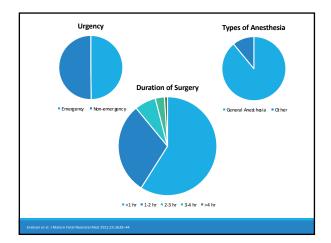
# Learning Objectives

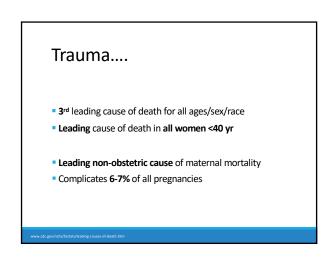
- Describe when, where and how to perform a safe anesthetic for non-obstetric surgery
- List maternal and fetal risks
- Summarize drug administration during pregnancy
- Evaluate the importance of a multidisciplinary team

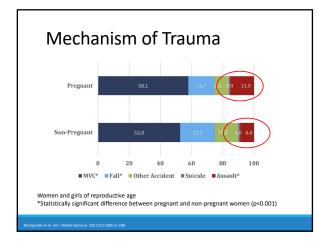
# Incidence

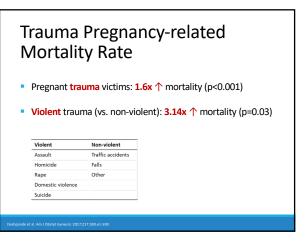
- Approximately 4M births/year (US)
- > Up to 88,000 (2.2%) non-obstetric surgery during pregnancy cases/year (US)

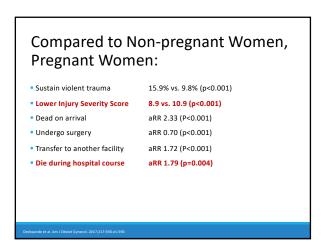
Pregnancies/year

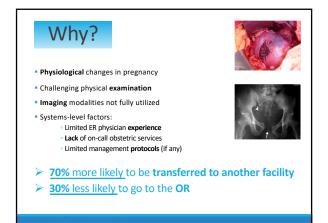

Non-obstetric surgery No surgery


# Outline


## Types of surgery

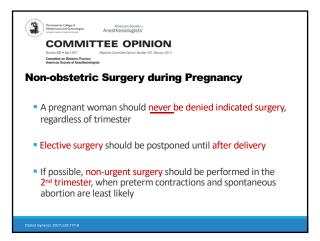

- When and where to perform surgery?
- Maternal and fetal risks
- Operative considerations

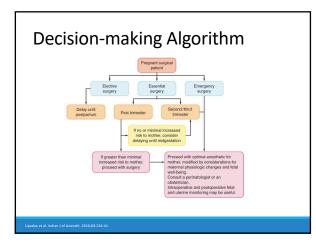

#### **Types of Surgery** Appendectomy 44 Open Laparoscopi 37 63 Cholecystectomy 22 Open 10 Laparoscopic 90 Intraperitoneal procedures 11 Open Laparoscopio 81 19 Breast procedures 8 Other (vascular, cardiac, neck) 6 Musculoskeletal procedures 6 Skin, incision + drainage 3

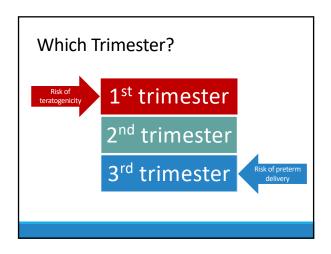







# Outline

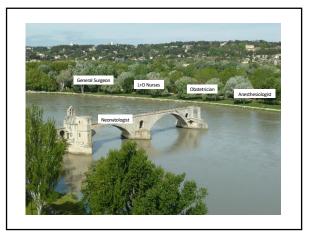
- Types of surgery
- When and where to perform surgery?
- Maternal and fetal risks
- Operative considerations

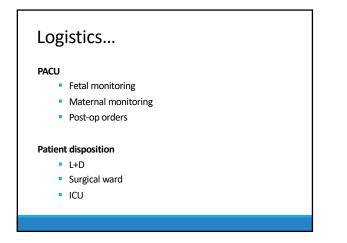


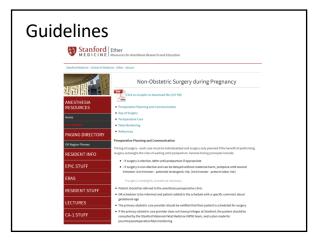




# Logistics


# "Think about every possible eventuality ....and then think some more!"


#### Personnel


- OB team/L+D nurse for monitoring
- OB team for surgery
- NICU team
- Intensivist

#### OR equipment

- Uterotonic/lytic medications
- Wedge (LUD)
- Fetal monitor
- Cesarean delivery instruments
- Neonatal resuscitation equipment (multiples?)







# Outline

- Types of surgery
- When and where to perform surgery?
- Maternal and fetal risks
- Operative considerations

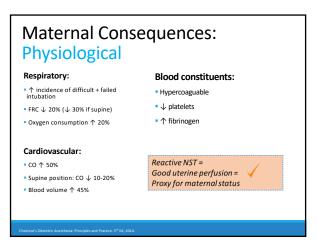
# What is the patient thinking....?

- Will the drugs affect my baby?
- Will I loose my baby?
- Will it affect my ability to breastfeed?
- What if I don't go ahead with the surgery?

...and what will your answers be?

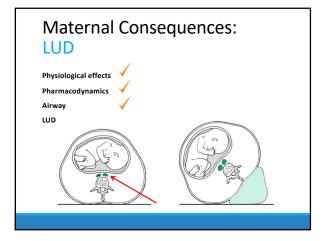
# Maternal Risk Increased?

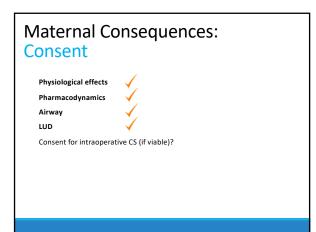
2539 pregnant women matched 1:1 with non-pregnant women undergoing general surgery


Overall morbidity: <u>No significant difference</u>

6.6% in pregnant women vs. 7.4% in non-pregnant women (p=0.30)

30-day mortality: <u>No significant difference</u>
 0.4% in pregnant women vs. 0.3% in non-pregnant women (p=0.82)


# 30-day Major Postoperative Complications after Non-obstetric Surgery


| Predictor                                                  | aOR (95% CI)      | P value |
|------------------------------------------------------------|-------------------|---------|
| Age (per 5 yr increase)                                    | 1.32 (1.13, 1.53) | <0.001  |
| Preoperative systemic infection                            | 2.30 (1.48, 3.58) | <0.001  |
| New York Heart Class III or IV                             | 3.77 (1.62, 8.81) | 0.002   |
| Ventilator dependency                                      | 6.72 (1.84, 24.5) | 0.004   |
| Functional status (dependent/partially dependent for ADLs) | 3.34 (1.48, 7.52) | 0.004   |
| Previous procedure (within 30 days)                        | 2.01 (0.84, 4.81) | 0.12    |
| Operative time:                                            |                   |         |
| <1 h                                                       | 1 (reference)     | <0.001  |
| 1-2 h                                                      | 3.33 (2.05, 5.39) | 0.011   |
| 2-3 h                                                      | 2.66 (1.25, 5.66) | 0.008   |
| 3-4 h                                                      | 3.95 (1.44, 10.8) | 0.010   |
| >4 h                                                       | 5.80 (1.53, 22.0) | -       |



# Maternal Consequences: Pharmacodynamics Physiological effects • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • </tr







# **Fetal Consequences**

#### Risk of fetal loss

- 2% simple appendicitis vs.
- 6% complicated appendicitis (p<0.05)
- Laparoscopic vs. open appendectomy = OR 2.31

#### Risk of pre-term labor

° 'Considerable risk' within first week post-appendectomy

#### Risk of pre-term delivery

4% simple appendicitis vs. 11% complicated appendicitis (p<0.05)

# Teratogenicity Studies

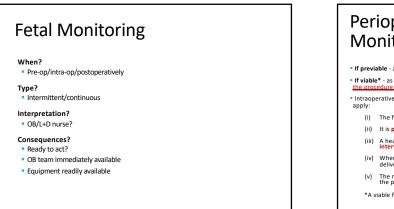
#### Prospective studies are impractical

**Drug Categories** 

Current data taken from:

- 1) Studies of the reproductive effects of anesthetic agents in small animals
- 2) Epidemiologic surveys of operating room personnel constantly exposed to sub-anesthetic concentrations of inhalation agents
- Studies of pregnancy-outcome in women who have undergone surgery while pregnant

**Teratogenicity** = Any significant postnatal change in **function** or **form** in an offspring after prenatal treatment


- Drug factors
- Dose
- Duration
- Timing of exposure
- Genetic predisposition
- Hypoxia
  Hypercarbia
  Stress/anxiety
- Stress/anxiety

Non-drug factors

Temperature abnormalitiesCarbohydrate metabolism

Pregnancy categories: A, B, C, D, X
Benzodiazepines?
Nitrous oxide?
Anesthetic drugs are not proven as known teratogens
Many agents have been used with no demonstrable difference in maternal and fetal outcomes

hestnut's Obstetric Anesthesia: Principles and Practice. 5<sup>th</sup> Ed, 2014.





# Outline

- Types of surgery
- When and where to perform surgery?
- Maternal and fetal risks
- Operative considerations

# Operative Considerations

## Maintain maternal and fetal homeostasis:

- Oxygenation
- Carbon dioxide + acid-base balance
- Temperature
- Uteroplacental perfusion (fetal monitoring)
- Cautious positioning
- Cautious surgical techniques
- (insufflation pressures 10-15 mm Hg)
- Treat pre-term labor
  - (no need for prophylactic treatment)

# In Summary

- Described when, where and how to perform a safe anesthetic for non-obstetric surgery
- Listed maternal and fetal risks
- Summarized drug administration during pregnancy
- Evaluated the importance of multidisciplinary team planning

gabir@stanford.edu

# Eating During Labor and the "Full Stomach" Pre and Post Delivery

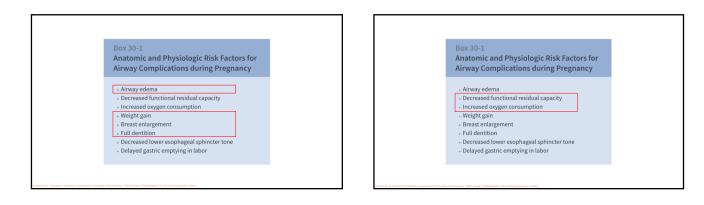
Atisa Britton, MD Assistant Clinical Professor UCSF Department of Anesthesia and Perioperative Care SOAP 2019 Sol Shnider Meeting Disclosures

I have no conflicts of interest in relation to this presentation.

#### Overview

- Gastroesophageal anatomic and physiologic changes in pregnancy
- Data on pulmonary aspiration rates during labor and delivery
- Recommendations from professional organizations on oral intake during labor
- Data on anesthesia for surgical abortions  $\rightarrow$  Pregnancy aspiration risk
- Data on anesthesia for PPTL and postpartum physiologic changes  $\rightarrow$  Postpartum aspiration risk

#### Objective


Provide data on peripartum aspiration risk to aide in the development of an informed anesthetic plan for pregnant and postpartum patients




Anatomic and Physiologic Risk Factors for Airway Complications during Pregnancy

#### Airway edema

- Decreased functional residual capacity Increased oxygen consumption
- Weight gain
- Breast enlargement
  Full dentition
- Decreased lower esophageal sphincter tone
   Delayed gastric emptying in labor





| Parameter                                                   |              | Trimester    |              | Labor        | Postpartum |
|-------------------------------------------------------------|--------------|--------------|--------------|--------------|------------|
|                                                             | FIRST        | SECOND       | THIRD        |              | (18h)      |
| Barrier<br>pressure <sup>†</sup>                            | Decreased    | Decreased    | Decreased    | Decreased    | ?          |
| Gastric<br>emptying                                         | No<br>change | No<br>change | No<br>change | Delayed      | No change  |
| Gastric acid<br>secretion                                   | No<br>change | No<br>change | No<br>change | ?            | ?          |
| Proportion of<br>women with<br>gastric<br>volume ><br>25 mL | No<br>change | No<br>change | No<br>change | Increased    | No change  |
| Proportion of<br>women with<br>gastric pH <<br>2.5          | No<br>change | No<br>change | No<br>change | No<br>change | No change  |

| Parameter                                                   |              | Trimester    | er Labor     |              |           |
|-------------------------------------------------------------|--------------|--------------|--------------|--------------|-----------|
|                                                             | FIRST        | SECOND       | THIRD        |              | (18 h)    |
| Barrier<br>pressure <sup>†</sup>                            | Decreased    | Decreased    | Decreased    | Decreased    | ?         |
| Gastric<br>emptying                                         | No<br>change | No<br>change | No<br>change | Delayed      | No change |
| Gastric acid secretion                                      | No<br>change | No<br>change | No<br>change | ?            | ?         |
| Proportion of<br>women with<br>gastric<br>volume ><br>25 mL | No<br>change | No<br>change | No<br>change | Increased    | No change |
| Proportion of<br>women with<br>gastric pH <<br>2.5          | No<br>change | No<br>change | No<br>change | No<br>change | No change |

| Parameter                                                   | Trimester    |              |              | Labor        |           |  |
|-------------------------------------------------------------|--------------|--------------|--------------|--------------|-----------|--|
|                                                             | FIRST        | SECOND       | THIRD        |              | (18h)     |  |
| Barrier<br>pressure <sup>†</sup>                            | Decreased    | Decreased    | Decreased    | Decreased    | ?         |  |
| Gastric<br>emptying                                         | No<br>change | No<br>change | No<br>change | Delayed      | No change |  |
| Gastric acid<br>secretion                                   | No<br>change | No<br>change | No<br>change | ?            | ?         |  |
| Proportion of<br>women with<br>gastric<br>volume ><br>25 mL | No<br>change | No<br>change | No<br>change | Increased    | No change |  |
| Proportion of<br>women with<br>gastric pH <<br>2.5          | No<br>change | No<br>change | No<br>change | No<br>change | No change |  |

| Parameter                                                   |              | Trimester    |              | Labor        | Postpartum |
|-------------------------------------------------------------|--------------|--------------|--------------|--------------|------------|
|                                                             | FIRST        | SECOND       | THIRD        |              | (18h)      |
| Barrier<br>pressure <sup>1</sup>                            | Decreased    | Decreased    | Decreased    | Decreased    | ?          |
| Gastric<br>emptying                                         | No<br>change | No<br>change | No<br>change | Delayed      | No change  |
| Gastric acid<br>secretion                                   | No<br>change | No<br>change | No<br>change | ?            | ?          |
| Proportion of<br>women with<br>gastric<br>volume ><br>25 mL | No<br>change | No<br>change | No<br>change | Increased    | No change  |
| Proportion of<br>women with<br>gastric pH <<br>2.5          | No<br>change | No<br>change | No<br>change | No<br>change | No change  |

# Peripartum LES: Anatomy & Physiology

- $\bullet$  Decreased tone of lower esophageal high pressure zone (LEHPZ)  $\rightarrow$  Intraabdominal segment of the esophagus displaced into the thorax
  - $\rightarrow$  Progestin
- LEHPZ returns to prepregnancy levels at 1-4 weeks postpartum

# Gastroesophageal Reflux Disease (GERD)

- 30-50% incidence of GERD during pregnancy • 80% regurgitation with no heartburn
- Prevalence of GERD
  - First trimester: 10%
  - Second trimester: 40%
  - Third trimester: 55%

## Risk Factors for GERD during Pregnancy

- Gestational age
- GERD prepregnancy
- Multiparity

## **Risk Factors for GERD**

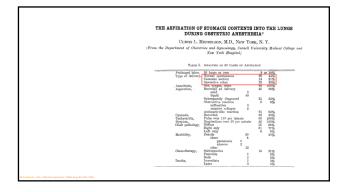
- Gestational age
- GERD prepregnancy
- Multiparity
- Weight gain

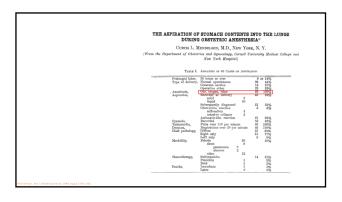


## THE ASPIRATION OF STOMACH CONTENTS INTO THE LUNGS DURING OBSTETRIC ANESTHESIA=

DURING OBSTETRIC ANESTINGOLA" CURTES L. MINNORADO, M.D., NAW YORK, N. Y. (From the Department of Obstetrics and Opercoding, Correll University Medical College and New York Hospital)

# THE ASPIRATION OF STOMACH CONTENTS INTO THE LUNGE DURING ORSTETRIG ARBSTRESLA<sup>2</sup> CURTES L. MINSTARS, MD., NNY TONK, N. Y. (Press the Department of Distriction and Opencology, Correll University Medical Callege and New Teve Hampital)


Summary Summary <u>Sixty-six eases of aspiration</u> of stomate contents into the lungs during obstetric anesthesia are analyzed. The incidence of this complication is 0.15 per cent in 44.016 pregnancies at the New York Lying-Jn Hospital from 1982 to 1945.


Appiration was recorded as having definition were unrecognized until later. The charger of the appirated material in the 45 recorded cases was liquid in 40 and acid in free.

Morthing The two databy in the series were due to sufficient from complete obstruc-tion by solid undigested took. Both patients had recently ingested a 101 most, one shigh home previously, the other ak storus previously, Autopy obligation in the latter case revealed complete obstruction of the major respiratory prosages by solid doop justices.

# THE ASPIRATION OF STOMACH CONTENTS INTO THE LUNGE DURING ORSTETRIG ARRESTRESA.\* CURTES L. MINDERSK, MD., New York, N. Y. (Pres the Department of Distriction and Opencology, Correll University Makaal College and New York Magnitud)

Conclusions To Amplitude of the Conclusions To Amplitude of the Conclusions To Amplitude of the Conclusion and Amplitude Data A







| (Percent of<br>responses) | (Percent of responses)                             | (Percent of<br>responses)                                                    | (Percent of<br>responses)                                                                                                                                                                                                                 |
|---------------------------|----------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                    |                                                                              |                                                                                                                                                                                                                                           |
|                           |                                                    | 3                                                                            | 6                                                                                                                                                                                                                                         |
|                           |                                                    |                                                                              | 63                                                                                                                                                                                                                                        |
|                           |                                                    | 29                                                                           | 25                                                                                                                                                                                                                                        |
|                           |                                                    | 4                                                                            | 3                                                                                                                                                                                                                                         |
| 0*                        | 0*                                                 | 13                                                                           | 8                                                                                                                                                                                                                                         |
| 9.48                      | 108                                                | 19                                                                           | 18                                                                                                                                                                                                                                        |
| 44*<br>74                 | 19"                                                | 13                                                                           | 74                                                                                                                                                                                                                                        |
|                           |                                                    |                                                                              |                                                                                                                                                                                                                                           |
| ő                         | 0                                                  | 0                                                                            | 0                                                                                                                                                                                                                                         |
| 0                         | 0                                                  | 1                                                                            | 0                                                                                                                                                                                                                                         |
|                           | 9*<br>68*<br>18*<br>2<br>6*<br>24*<br>74<br>6<br>0 | 0* 7*<br>08* 02*<br>1* 25<br>6* 6*<br>24* 19*<br>24* 19*<br>24* 19*<br>3 0 0 | 9"         7"         3           64"         64"         56           10"         3         2           4"         6"         13           24"         19"         13           74         13         73           6         6         1 |







#### L&D Pulmonary Aspiration Rates

- OB Anesthesia Closed Claims: 4.2% (prior to 1990) to 0.46% (1990-2003)
- McDonnell 2008 Study: 0.4%
- SOAP Serious Complications Registry 2014 (>300,000 deliveries, >250,000 neuraxial anesthetics, >5,000 GAs): No aspiration events

#### L&D Pulmonary Aspiration Rates

- OB Anesthesia Closed Claims: 4.2% (prior to 1990) to 0.46% (1990-2003)
- McDonnell 2008 Study: 0.4%
- SOAP Serious Complications Registry 2014 (>300,000 deliveries, >250,000 neuraxial anesthetics, >5,000 GAs): No aspiration events



- Decreased use of GA (increased use of neuraxial anesthesia)
  - Aspiration prevention measures
  - Improvements in airway management

|                            | Potential<br>Proximate Etiology<br>of<br>Maternal Cardiac | Cause-specific Cardiac<br>Arrest Frequency<br>per 1,000 Women with<br>Each Condition | Survival to<br>Hospital<br>Discharge,<br>N (%) |
|----------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|
| Postpartum                 | Arrest, N (%)<br>1,349 (27.9)                             | 0.8                                                                                  | 739 (55.1)                                     |
| Antepartum<br>hemorrhage   | 813 (16.8)                                                | 0.9                                                                                  | 433 (53.2)                                     |
| Heart failure              | 645 (13.3)                                                | 15.6                                                                                 | 458 (71.1)                                     |
| Amniotic fluid<br>embolism | 645 (13.3)                                                | 252.7                                                                                | 337 (52.5)                                     |
| Sepsis                     | 544 (11.2)                                                | 2.1                                                                                  | 256 (46.9)                                     |
| Anesthesia<br>complication | 379 (7.8)                                                 | 29.5                                                                                 | 310 (81.9)                                     |
| Aspiration<br>pneumonitis  | 346 (7.1)                                                 | 20.3                                                                                 | 287 (82.9)                                     |
| Venous thrombo<br>embolism | 346 (7.1)                                                 | 43.9                                                                                 | 144 (41.5)                                     |
| Eclampsia                  | 296 (6.1)                                                 | 6.2                                                                                  | 226 (76.5)                                     |
| Puerperal                  | 212 (4.4)                                                 | 13.6                                                                                 | 85 (40.0                                       |

#### Gastric Ultrasound

Aust N.Z.J. Obset: Grossood, 2013 Aug 53(4):309-74. doi: 10.1111/aja.12078. Ep Maternal outcomes in women supplemented labour. ted with a high-protein drink in Valeo MC<sup>1</sup>. Cobb BT. Steen TL. Singh S. Phelos AL. Author Information

UND: Because of the potential aspiration risk, oral intake is restricted during labour: elermine whether high-protein drink supplementation in labour decreases nausea a atient satisfaction. AIMS: To dete

promoties gatherit utilitation. MATERIALS ARM METHODS: The sludy was registered with wave celosatriais.gov (<u>NCD</u> womens ware mandomised into the groups: Orouge P received a high-protein drive (253 mL PR); and Groups C arwards a control and resolution of the sludent PPN (SBAy) The and errans wave measured houry until drivery and at 1 h postbelway. Pater taustification following day. A scenario driver and the sludent protein driver and the sludent protein driver SBA of the sludent protein driver is the sludent protein driver and the sludent protein driver. The sludent protein driver sludent protein driver is the sludent protein driver and the sludent protein driver. The sludent protein driver is the sludent protein driver of the sludent protein driver and the sludent protein driver.

71(11):1284-1290. doi: 10.1111/anae.13605. Epub 2016 Aug 26. Changes in qualitative and quantitative ultrasound assessment of the gastric antrum before and after elective caesarean section in term pregnant women: a prospective cohort study. r**y.** Pop.M<sup>1</sup>. Desi rotes FP1. Boxvet L<sup>3,4</sup>

| Scansthesis, 2016 Nov;71(11):1284-1290. doi: 10.11111anae.13605. Epub 2016 Aug 26.                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Changes in qualitative and quantitative ultrasound assessment of the gastric<br>antrum before and after elective caesarean section in term pregnant women: |
| a prospective cohort study.                                                                                                                                |
| Recent C1 Chargest D12 Basest C1 Bas M1 December ED1 Bacent 134                                                                                            |

Bedside Gastric Ultrasonography in Term Pregna Cesarean Delivery: A Prospective Cohort Study.

# Annaliza, 1944 way doi:10.10 waith and waith a direct and a session of the gastric advants before advantations and an annalization in term preparation women: a session of the advantation of the advantation of the gastric advantations advantation of the antimeter of the advantation of the advantation of the advantation of the antimeter of the advantation of the advantation of the antimeter of the advantation of the advantation of the antimeter of the advantation of the advantation of the advantation of the advantation of the antimeter of the advantation of the advant



| Anaesthesis, 2016 Nov;71(11):1284-1290. doi: 10.11111/anae.13605. Epub 2016 Aug 26.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Changes in qualitative and quantitative ultrasound assessment of the gas<br>antrum before and after elective caesarean section in term pregnant wom<br>a prospective cohort study. |                                                                                                                                                                                                                                                                                                                                                                    |
| Rouget G <sup>1</sup> , Chassani D <sup>12</sup> , Ronnard G <sup>1</sup> , Pop M <sup>1</sup> , Despanges FP <sup>1</sup> , Rouvet L <sup>34</sup> .                              |                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                    | Ansath Analo, 2015 Sept121(3):752-8. doi: 10.1213/ANE.00000000000818.                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                    | Bedside Gastric Ultrasonography in Term Pregnant Women Before Elective<br>Cesarean Delivery: A Prospective Cohort Study.                                                                                                                                                                                                                                           |
|                                                                                                                                                                                    | Aczola C <sup>1</sup> , Perlas A: Siddissi NT, Garvalho JG.                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| East J. Acaesthesiol, 2018 May;35(5) 379-389. doi: 10.1097/EJA.00000000000749.                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |
| Ultrasound examination of the antrum to predict gastric content volum<br>trimester of pregnancy as assessed by MRI: A prospective cohort stud                                      |                                                                                                                                                                                                                                                                                                                                                                    |
| Boulhonsoully M <sup>1</sup> , Zelestiniericz L. Diaz A. Gulleud L. Chaumolte K. Despanyes FP. Leone M. Chassard D. Bo<br>GMEcho. Collaborative Networks                           | zeeti: Azifina.                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                    | Br. J.Anassith, 2016 Aug;117(2):198-206. doi: 10.1093/bja/sew171.                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                    | Ultrasonographic measurement of antral area for estimating gastric fluid<br>volume in parturients.                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                    | Zeiteskiewicz 1 <sup>1</sup> , Boptosaian MG <sup>1</sup> , Delmas AG <sup>1</sup> , Jay 1 <sup>2</sup> , Bourpoin A <sup>1</sup> , Ganzonino X <sup>3</sup> , Poriner M <sup>1</sup> , Coprint B <sup>2</sup> , Stewart A <sup>4</sup> ,<br>Chassard D <sup>3</sup> , Leone M <sup>6</sup> , Bouvet L <sup>7</sup> ; Azuftea and CARTicho Collaborative Networks- |
| AccessEvenia, 2018 Mar;73(3):295-303. doi: 10.1111/anae.14131. Epub 2017 Dec 19.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| Gastric ultrasound in the third trimester of pregnancy: a randomised<br>controlled trial to develop a predictive model of volume assessment.                                       |                                                                                                                                                                                                                                                                                                                                                                    |

#### Neuraxial Opioids and Gastric Emptying

 Although some controversy exists, there is evidence that gastric emptying is delayed in the presence of epidural or intrathecal opioids



Kelly et al. Anesth Analg. 1997 Oct;85(4):834-4. 3. Wright et al. 9r J Anaesth. 1992 Mar;68(3):248-51

# BMJ\_2000 Mur 24338-0784. doi:10.1138/mj.0784. Effect of food intake during labour on obstetric outcome: randomised controlled trial. Officities O<sup>1</sup>: Lab.B. Hard D. Seed P. Sterran A.

- 2426 nulliparous, non-diabetic women at term, with a singleton cephalic presenting fetus & in labor with a cervical dilation of < 6 cm
- Consumption of a light diet or water during labor
- Primary outcome: NSVD rate

# BMJ\_2009 Mer 24:338-3784. dox: 10:1366mg.13784. Effect of food intake during labour on obstetric outcome: randomised controlled trial. OSalthan G<sup>1</sup>. List. HarD. Seed P. Steman A

- Other outcomes:
  - Duration of labor
  - Need for augmentation of labor
  - Instrumental and cesarean delivery rates
  - Incidence of vomiting
  - Neonatal outcomes (1 and 5 minute Apgars, NICU or special care baby unit admissions)

# BML 2009 Mar 24338-784. doi: 10.1196/mj.b784. Effect of food intake during labour on obstetric outcome: randomised controlled trial. O'Sallwan G<sup>1</sup>, Lub, Hart, D. Seed P. Sheroan A.

- Results: No differences in any of the outcome measures
- Conclusion: Consumption of a light diet during labor did not influence obstetric or neonatal outcomes in participants

| Organization                                                                                                                                      | Recommendation                                                                                                                                                     | Strength of<br>recommendation |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| American College of Nurse-Midwives <sup>35</sup>                                                                                                  | Self-determination regarding oral intake encouraged<br>for women at low risk for aspiration.                                                                       | Not provided                  |
| American Congress of Obstetricians and<br>Gynecologists, American Society of Anesthesiologists<br>Task Force on Obstetric Anesthesia <sup>3</sup> | Clear liquids for women at low risk for aspiration. Small<br>amounts of clear liquids up to 2 hours before<br>anesthesia for women with no complications.          | Not provided                  |
| World Health Organization (WHO) <sup>4</sup>                                                                                                      | Noninterference with desire for food or liquid intake<br>without reason.                                                                                           | Not provided                  |
| Cochrane Review <sup>6</sup>                                                                                                                      | Since evidence shows no benefits or harms, there is no<br>justification for the restriction of fluids and food in labor<br>for women at low risk of complications. | Not provided                  |
| Royal College of Obstetricians and Gynaecologists:<br>NICE Clinical Guideline <sup>36</sup>                                                       | Women may eat a light diet in established labor unless<br>they have received opioids or they develop risk factors<br>that make a general anesthesia more likely.   | Not provided                  |
| Society of Obstetricians and Gynaecologists of<br>Canada <sup>27</sup>                                                                            | A woman in active labor should be offered a light or<br>liquid diet according to her preference.                                                                   | Not provided                  |
| The Royal Australian and New Zealand College of<br>Obstetricians and Gynaecologists                                                               | Women should be encouraged to only have clear fluids<br>and light diet in the active phase of labor.                                                               | Not provided                  |

#### ACOG COMMITTEE OPINION

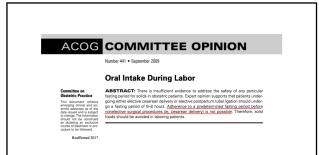
Number 441 • September 2009

med 2017

#### Oral Intake During Labor

ABSTRACT: There is insufficient evidence to address the safety of any particular fasting partod for solids in obstetric patients. Expert oprion support that patients under going effere detuce caserand delivary or elective postpatient undall guidon should underter on a fasting partod of 6-4 hours. Adhrence to a predetermined fasting period before nonelective support postpatients, caserand delivary) is not possible. Therefore, solid toors should be avoided in laboring patients.

#### ACOG COMMITTEE OPINION


Number 441 • September 2009

#### Oral Intake During Labor

ABSTRACT: There is insufficient evidence to address the safety of any particular fasting particul for solids in obtaintic patients. Event spinon supports that patients under going either device scarema delivery or elective postpatient habit gation should underer a fasting particul of 6-8 hours. Adhrence to a predetermined fasting particul before nonelective support produces (as careared eleviney) is not possible. Therefore, solid foods should be avoided in laboring patients.

Reaffirmed 2011





#### ACOG COMMITTEE OPINION

#### Number 441 • September 2009

#### Oral Intake During Labor

ABSTRACT: There is insufficient evidence to address the safety of any particular fasting pariod for solids in obstrain; patients: Expert opinion supports that patients unde-going either effective coarsend elively or excited postgant. Thus fails after shad under go a lasting period of 6-B hours. Adverses to a predetermined fasting period before nonelective supplies procedures (or casarsen delively is not possible. Therefore, solid foods should be avoided in aboring patients.

#### PRACTICE PARAMETERS

#### Practice Guidelines for Obstetric Anesthesia

An Updated Report by the American Society of Anesthesiologists Task Force on Obstetric Anesthesia and the Society for Obstetric Anesthesia and Perinatology\* February 2016 124 • No 2

#### Recommendations for Aspiration Prevention ++

#### Clear Liquids.

- The oral intake of moderate amounts of clear liquids may be allowed for uncomplicated laboring patients.
  The uncomplicated patient undergoing elective surgery may have clear liquids up to 2h before induction of anesthesia.

#### Recommendations for Aspiration Prevention ++

#### Clear Liquids.

- Examples of clear liquids include, but are not limited to, water, fruit juices without pulp, carbonated bever-ages, clear tea, black coffee, and sports drinks.
   The volume of liquid ingested is less important than the presence of particulate matter in the liquid ingested.

#### Recommendations for Aspiration Prevention ++

#### Clear Liquids.

• Laboring patients with additional risk factors for aspiration (e.g., morbid obesity, diabetes millitus, and difficult airway) or patients at increased risk for operative delivery (e.g., non-reassuring fetal heart rate pattern) may have further restric-tions of oral intake, determined on a case-by-case basis. Recommendations for Aspiration Prevention ++

Solids.

• Solid foods should be avoided in laboring patients.

#### Recommendations for Aspiration Prevention ++

#### Solids.

 The patient undergoing elective surgery (e.g., scheduled cesarean delivery or postpartum tubal ligation) should undergo a fasting period for solids of 6 to 8h depending on the type of food ingested (e.g., fat content).‡‡

## Key Points: Eating During Labor

- Divergent recommendations amongst professional organizations worldwide
- Controversy based on low incidence of aspiration + high morbidity
- Evidence shows that eating during labor does not affect obstetric and neonatal outcomes

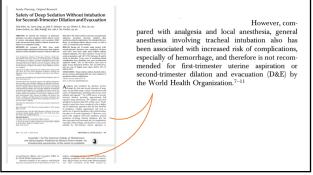
The "Full Stomach" Pre and Post Delivery

# Anesthesia and Aspiration Risk During and After Pregnancy

• No consensus

• No guidelines

"Full Stomach" Pre Delivery


#### © 2019 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Conditions that increase risk of aspiration during induction of anesthesia

- Full stomach nonfasted, emergency surgery or trauma Pregnancy after 12 to 20 weeks gestation (gestational age for increased risk is controversial) Symptomatic gastrosophage agatrosophage agatros
- Increased intra-abdominal pressure ascites, abdominal mass

# 

injury (0.04%, 65% Cl 0.000-0.22%). CONCLUSION: Deep sedation without tracheal intubation for women undergoing D&E has a low incidence of anesthesia-related complications.



| Study                                                                                                                                                                                                                     | Sample size | Second trimester<br>patients                           | Incidence of<br>Aspiration |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------|----------------------------|
| The safety of deep sedation without<br>intubation for abortion in the outpatient<br>setting<br>Dean et al. J Clin Anesth. 2011                                                                                            | 62,125      | 11,039 (17.8%)<br>6,752 (10.6%) ≥ 15 wks<br>gestation  | None                       |
| Intravenous Sedation Without Intubation<br>and the Risk of Anesthesia Complications<br>for Obese and Non-Obese Women<br>Undergoing Surgical Abortion: A<br>Retrospective Cohort Study<br>Gokhale et a. Anesth Analg. 2016 | 5,579       | 1,707 (30.6%)<br>851 (15.3%) were ≥17<br>wks gestation | None                       |
| Deep sedation without intubation during<br>second trimester surgical termination in<br>an inpatient hospital setting<br>Mancuso et al. Contraception. 2017                                                                | 313         | 313 (100%) ≥ 16 wks<br>gestation                       | None                       |







# Summary: "Full Stomach" Pre Delivery

- Decreased LES tone as early as the first trimester
- Prevalence of GERD increases dramatically in the second trimester
- Current data shows low incidence of aspiration events in second late trimester abortions performed under deep sedation without intubation
- Major limitation: No prospective data!

"Full Stomach" Post Delivery

# A prospective observational study of the use of the Proseal laryngeal mask airway for postpartum tubal ligation. Exans NB<sup>1</sup>, Skowno JJ, Bennetl PJ, James MF, Dyer RA. Author information

- 4 CoRND: Through controvensial. The risk of pulmonary separation during general anxestifiestia in the intendate any period appears two. The efficacy of the Proceed languagi mask airway was shalled prospectively in a group of undergrapping constraint, multi liquidot. The Stronger N: The Proseal laryngeal mask airway provides an effective airway for general anaesthesia in faster ubal ligation from 8 h after normal vaginal delivery. While the safety of an unprotected airway in this mains uncertain, this study suggested a law risk of regurgitation, especially in the first 24 h post par

## Risk Factors for Postpartum Aspiration

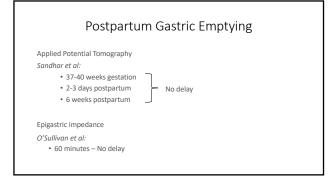
- Gastric emptying
- Gastric volume and pH
- Gastroesophageal reflux

## Postpartum Gastric Emptying

Paracetamol Absorption Test

Gin et al:

• Day 1 and day 3, 6 weeks – No delay


Whitehead et al:

• 2 hours - Delay

• 18-24 hours, 24-48 hours - No delay

Nimmo et al:

• 2-5 days - No delay



#### Postpartum Gastric pH and Volume

 No difference in intragastric pH and volume of postpartum women compared to nonpregnant women

- Blouw et al: Mean time to delivery 19.5 hours
- Lam et al: 9 to 120 hours postpartum

## Postpartum Gastroesophageal Reflux

• Vanner and Goodman: Significant decrease in gastroesophageal reflux by the second day after delivery

# Summary: "Full Stomach" Post Delivery

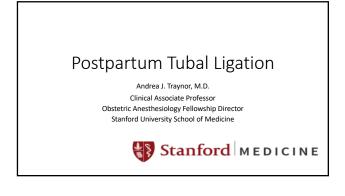
 ${\scriptstyle \bullet}$  Most studies show no delay in gastric emptying starting at 24 hours

- Reflux is decreased starting at 48 hours
- LEHPZ returns to prepregnancy levels within 1-4 weeks postpartum
- No difference in gastric acid secretion (remains highly acidic)

# Aspiration Prophylaxis

- Metoclopramide:
  - Increases lower esophageal sphincter tone
  - Enhances gastric emptying
- Antacids and H2-receptor antagonists
   Increases gastric pH

## Take Away Points


Peripartum pulmonary aspiration is rare

- ...likely too rare to be used as a primary outcome for RCTs
- Peripartum aspiration results in significant maternal morbidity
- LES tone and difficult intubation are major risk factors for aspiration during pregnancy and the immediate postpartum period (+ delayed gastric emptying during labor)

# Take Away Points

- ACOG and ASA recommend avoiding solid foods during labor
- Pregnancy induced physiologic and anatomic changes can help guide the anesthetic plan
- Utilizing neuraxial anesthesia (avoiding GA) is the most effective way to reduce the risk of aspiration
- Need more reliable data informing an evidence-based approach to anesthesia care for pregnant and postpartum women!





| Disclosures |
|-------------|
|-------------|

Nothing to disclose

Except.....

I'm passionate about this topic!

Why this is important

**Decision Making Process** 

Barriers to Care

Anesthetic Technique

## **Tubal Ligation**

One of the most effective methods of birth control Failure rate = 6/1000

2<sup>nd</sup> most commonly used method of birth control

Postpartum Tubal Ligation Request Completion Rate = 31-56%



Richardson MG. Anesth Analg 2018;126:1225-31

### Unfulfilled Requests

709 Patients

324 (46%) did not receive procedure

#### 121 (37%) - No consent

#### 21 (6.5%) - OR availability

Predominantly African American, Latino, unemployed, unmarried, insured by Medicaid

Zite N, et. Al. Contraception. 2006;73:404-407.

| Why?? | What's the issue with consent? |
|-------|--------------------------------|
|       |                                |

Consent for Tubal Ligation

Almost half of pregnancy care = Medicaid

Medicaid Title XIX Consent Form – signed, in chart

Over age 18-21, mentally competent

>30 days, not more than 180 days

No Consent = No Tubal

What about patients with co-existing disease?

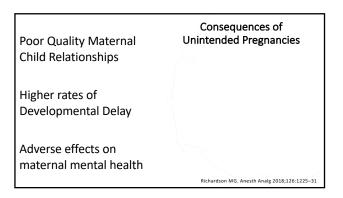
### Complications of Tubal Ligation

Large Swiss study >5000 patients = zero deaths

Complications < 0.5%

 Intraabdominal injury, fever, hemorrhage (0.27%), thromboembolic events

Huber AW, Eur J Obstet Gynecol Reprod Biol. 2007;134:105-109.


### Complications of Repeat Pregnancy in Sick Patients

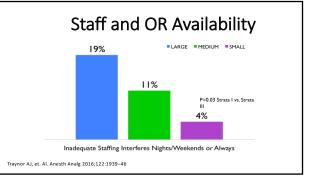
Maternal Mortality (CDC) = 23.8 per 100,000 Severe Maternal Morbidity = 144/10,000 delivery hospitalizations (2014)

Racial and ethnic disparities - African Americans most at risk

Interpregnancy interval <18 months increases the risk of: Small for Gestational Age Preterm Birth Low Birth Weight CDC.gov, accessed 3/16/2019

Richardson MG. Anesth Analg 2018;126:1225–31




### Staff and OR Availability

Hospitals Offering PPTL

Stratum I: 85% Stratum II: 90% Stratum III: 87%

How often does inadequate staffing interfere with tubal ligation?

Traynor AJ, et. Al. Anesth Analg 2016;122:1939-46



1460 Women Delivered
429 Requested PPTL
269 (69%) Received the Procedure
133 (31%) Did not
Those who did not were given
similar methods of birth control
Pregnancies within a year?

47% pregnant within one year Thurman A.R. Janecek T. Obstet Gynecol. 2010 Nov:116(5):1071-7.

#### Complications of Repeat Pregnancy in Sick Patients

Maternal Mortality (CDC) = 23.8 per 100,000 Severe Maternal Morbidity = 144/10,000 delivery hospitalizations (2014)

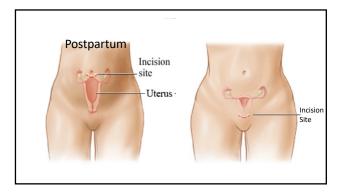
Racial and ethnic disparities - African Americans most at risk

Interpregnancy interval <18 months increases the risk of: Small for Gestational Age Preterm Birth Low Birth Weight CDC.gov, accessed 3/16/2019 Richardson MG. Anesth Analg 2018;126:1225–31

### **Consequences of Unintended Pregnancy**

2010 – 138,853 Medicaid Funded Sterilizations 53% of requests unfulfilled 29,013 unintended pregnancies in the US Cost of a Medicaid Birth 2010 = \$12,744

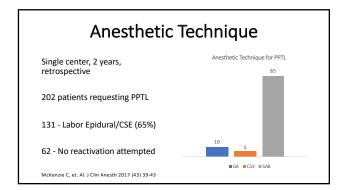
# \$371,000,000

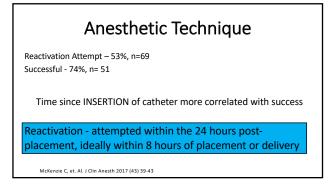

Borrero S, et Al. Contraception. 2013;88:691-696.

### ACOG Committee Opinion #530: Access to Postpartum Sterilization

"Given the <u>consequences</u> of a missed procedure and the limited time frame in which it may be performed, <u>postpartum</u> <u>sterilization should be considered an</u> <u>urgent surgical procedure."</u>

> The American College of Obstetricians and Synecologist<sup>2</sup> Committee on Health Car for Underserved Women. Access to postpartum sterilization. Available at: http://www.acog.org/Resources.And-Publications//Committee-Options/ Committee-on-Health-Care-for-Underserved Women/Access-to-Postpartum-Sterilization. Accessed Warch 22, 2017.


How Post Partum Tubal Ligation is Done




Anesthetic Technique

Should I use the epidural?

Success rates 67-90%





### Anesthetic Technique

Survey: 26 Fellowship Directors from SOAP

44% - Immediately after delivery

44% - > 2h after delivery

McKenzie C, et. Al. J Clin Anesth 2017 (43) 39-43

### **Epidural Anesthesia**

50% left epidurals in place for PPTL after delivery

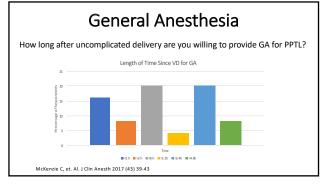
70% dosed epidurals if <24 hours

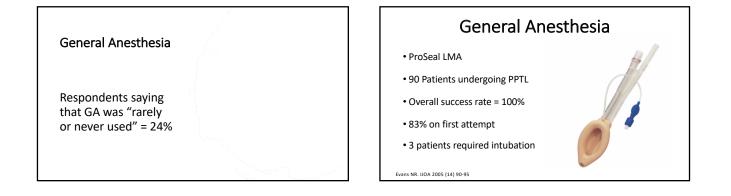
23% "rarely or never used epidurals"

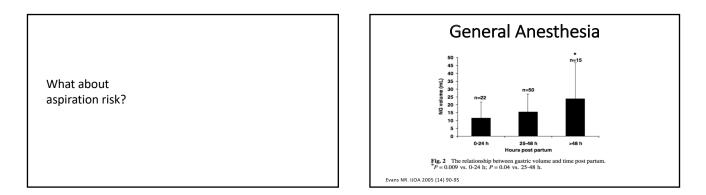
McKenzie C, et. Al. J Clin Anesth 2017 (43) 39-43

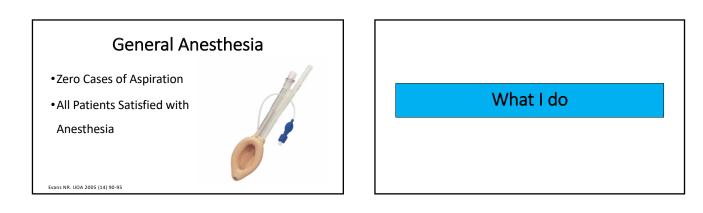
### Spinal Anesthesia

Preferred technique no epidural in situ

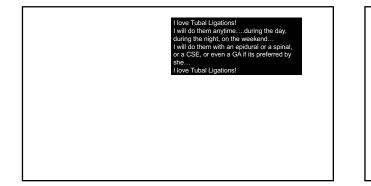

Bupivacaine 10-12.5mg (48%)


Fentanyl (88%)


T4-T6 level


McKenzie C, et. Al. J Clin Anesth 2017 (43) 39-43









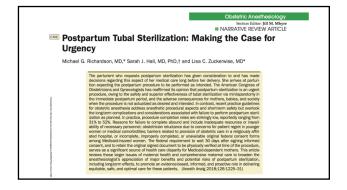



221



## What I do

#### **Reactivate Epidural**


- Patient worried about repeat procedureIf interval is short and it
- worked well for labor

### Spinal Anesthesia

1.5ml bupivacaine with fentanyl 15mcg Aim for T6 level

### General Anesthesia

- Normal body habitus = LMA
- Obese = ETT





#### Journal of Clinical Anesthesia 43 (2017) 39-46

Contents lists available at ScienceDirect Journal of Clinical Anesthesia

Original Contribution

Postpartum tubal ligation: A retrospective review of anesthetic management at a single institution and a practice survey of academic institutions

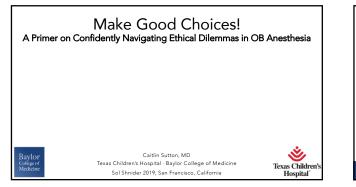
Christine McKenzie <sup>a,1</sup>, Seden Akdagli <sup>b</sup>, Gillian Abir <sup>c</sup>, Brendan Carvalho <sup>c,\*</sup>

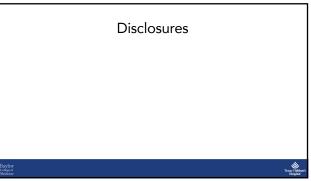
<sup>8</sup> Department of Anesthesiology, UNC Medical Center, 101 Manning Drive, Chapel Hill, NC 27516, United States <sup>9</sup> Department of Anesthesiology, Roy Downstate Medical Center, 450 Catoson Avenue, Brooklyn, NY 11202, United States <sup>6</sup> Department of Anesthesiology, Performative and Pain Medicalis, Sauford University, School of Medicina, Otonstaru Drive, Stauford, CA 94305, United States





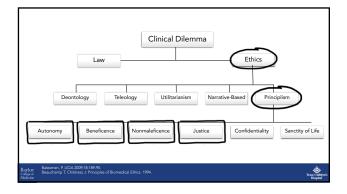
# Sunday, March 17, 2019

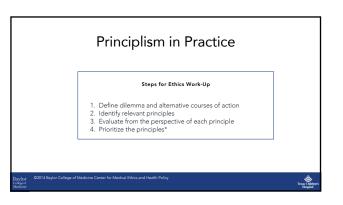

# Session X: Complications and Uncommon Occurrences Moderator: Brendan Carvalho, M.B., B.Ch., FRCA

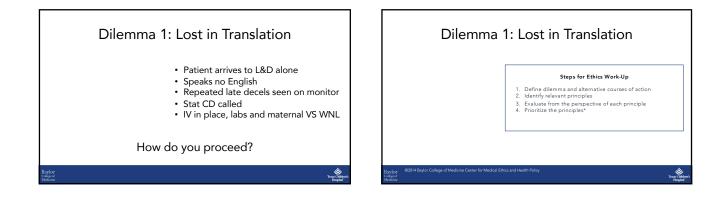

Ethical Dilemmas in Obstetric Anesthesia Caitlin D. Sutton, B.S., M.D.

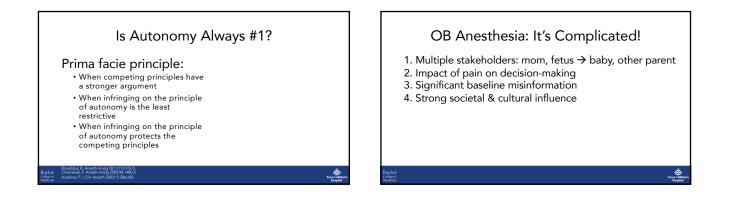
Management of Postpartum Headaches Jessica Ansari, M.D.


The Diagnosis and Management of Peripartum Neurologic Complications


Mark D. Rollins, M.D., Ph.D.



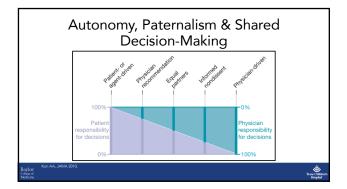



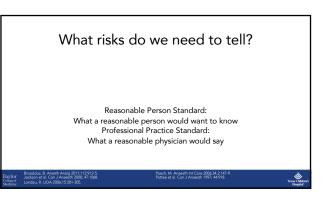



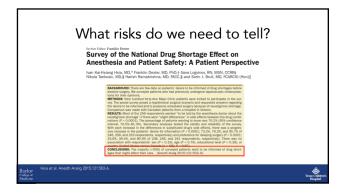






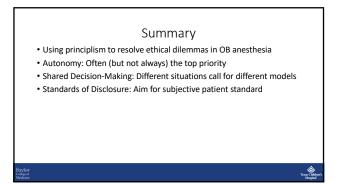

225












# Dilemma 3: Should I tell the patient I'm using isobaric bupivacaine?

- New policy has been implemented
- Scheduled and urgent cesareans get isobaric bupivacaine
- Hyperbaric bupivacaine reserved for stat cesarean deliveries

What do you need to tell the patient?

| Baylor<br>Tollege of<br>Acdicine | Broaddus, B. Anesth Analg 2011;112:912-5.<br>Jackson et al. Can J Anaesth 2000; 47:1068.<br>Landau, R. LICIA 2006;15:301-305. | Paech, M. Anaesth Int Care 2006/34,2:147.9.<br>Pattee et al. Can J Anaesth 1997; 44:918.<br>Clortea. J Civ L Stud 2018; 191-2. | Texas Child<br>Hospital |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|



### Management of Postpartum Headache

JESSICA ANSARI, MD CLINICAL INSTRUCTOR OF ANESTHESIOLOGY, PERIOPERATIVE AND PAIN MEDICINE

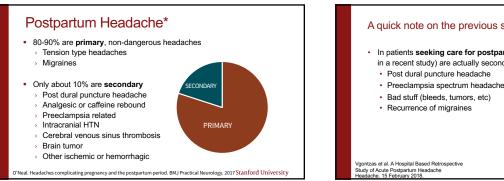
Stanford University

### **Disclosures**

None

#### Overview

- . Incidence and DDx for postpartum headaches
- Discuss post dural puncture headache
- Review the evidence for epidural blood patch
- Review the evidence for other treatments for post dural puncture headache
- Review the evidence for preventive measures in case of wet tap


Stanford University

#### Acute Postpartum headache

- Very common!
- 30-40% incidence in the first days . to weeks after delivery in prospective studies

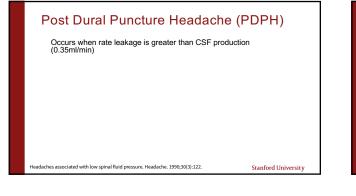
Stanford University

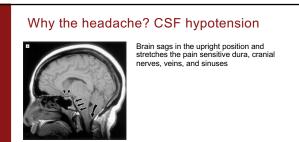
Stanford University



# A quick note on the previous slide In patients seeking care for postpartum headache, the majority (75% in a recent study) are actually secondary headaches · Preeclampsia spectrum headaches SECONDARY Stanford University

#### Red flags that warrant careful evaluation

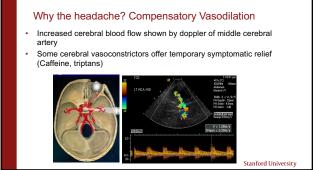

- Hypertension
- · Neurological deficits (other than tinnitus and/or muffled hearing)
- Unusually severe or "thunderclap" headaches
   Headaches that worsen when lying down or awaken to
  - Headaches that worsen when lying down or awaken the patient from sleep
- · Loss of previously positional nature of a post dural puncture headache

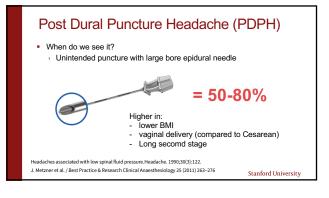

Stanford University

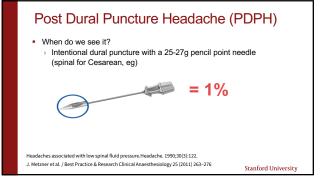
#### Post Dural Puncture Headache (PDPH)

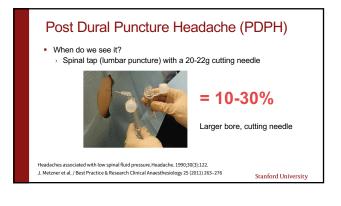
- · Headache that occurs within 5 days of a neuraxial procedure
- Usually orthostatic (worse upon sitting or standing)
- More than 50% will also have
   Neck pain or stiffness
- Photophobia
- > Tinnitus or hypoacusis
- Nausea

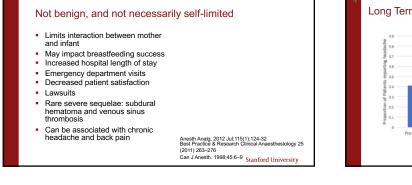
Van de Velde. Ten years of experience with accidental dural puncture and post-dural puncture headache in a tertiary obstetric anaesthesia department. IJOA, 17 (2008)

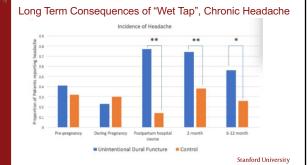


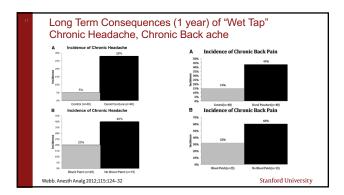



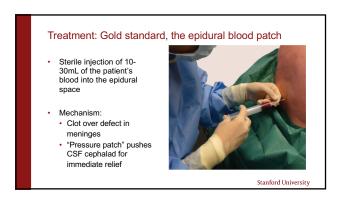


Kunkle EC, Ray BS, Wolff HG.. Arch Neurol 1949; 49: 323

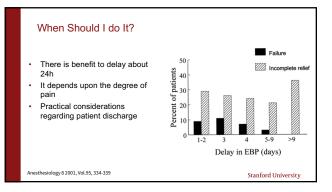

Stanford University

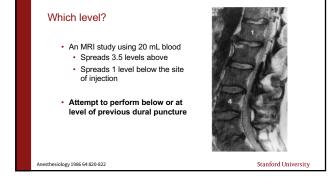

Stanford University

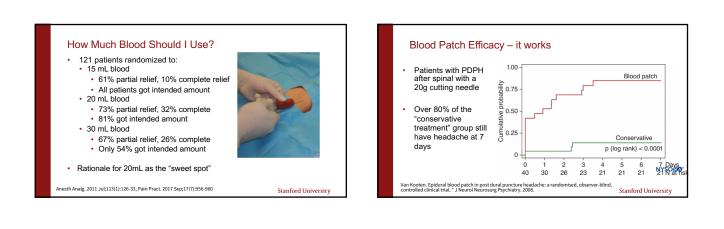


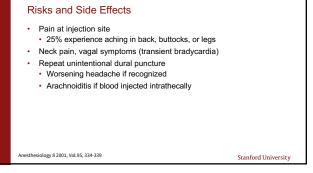



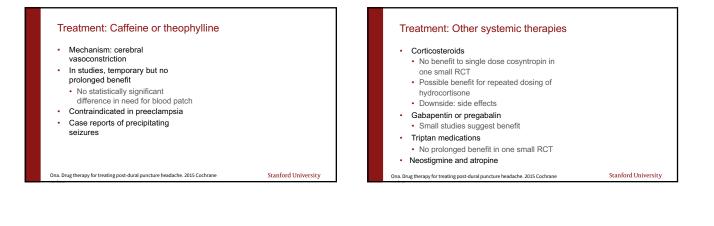



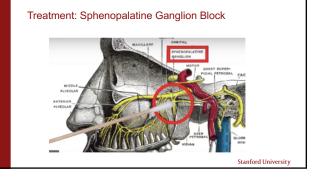







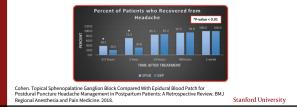


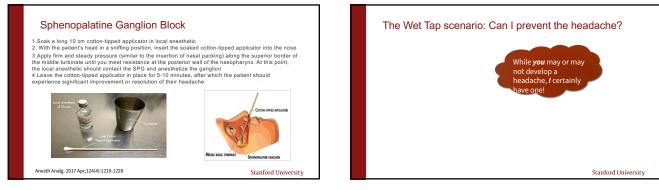




#### Treatment: "Conservative management"

- No evidence for bed rest, abdominal binders, or hydration other than symptom palliation
- Not practical for new mothers


Stanford University





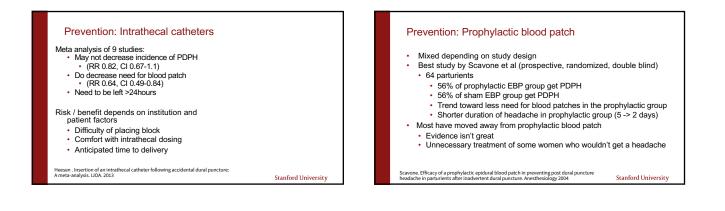

### Sphenopalatine Ganglion (SPG) block

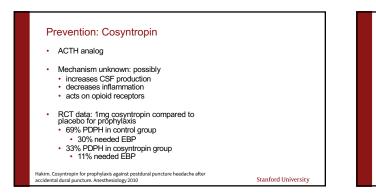
- Retrospective study of patients who received SPG block (42) compared to epidural blood patch (39)
- · Better early relief and no difference long term with SPG block





#### Prevention: Not worth forcing bed rest


 No evidence to support the common practice of recommending bed rest and aggressive hydration in the prevention of PDPH.


Stanford University

#### Prevention: Low hanging fruit

- $\label{eq:constraint} \begin{array}{l} \mbox{Replace some CSF volume with the sterile LOR saline} \\ \mbox{One small study (n = 43), immediate injection of 10 mL saline through the epidural needle substantially reduced the incidence of PDPH (32%, compared with 62% in a matched control group) and decreased need for EBP (p = 0.004). \end{array}$
- Consider replacing stylet prior to removing needle
  - May prevent a "wicking strand" of arachnoid from coming out

Strupp. Incidence of post lumbar puncture syndrome reduced by reinserting the stylet. 1998 Kuczkowski. Decrease in the incidence of post-dural puncture headache: Maintaining CSF volume. Stanford University





#### Summary

- Postpartum headaches are common and generally benign
- · Women seeking help for headaches generally require treatment for:
  - Post dural puncture headache (most common)
  - · Preeclampsia-related headache
  - Migraine disorder recurrence
  - · Other bad stuff that requires imaging
- Watch for:
- HTN
  - · focal neurological deficits
  - "thunderclap" symptoms
  - · Nonpostural headaches

Stanford University

Stanford University

#### Summary

- Postdural puncture headaches · Are not necessarily benign
- · Are linked to long term headache and back pain

#### Summary

- Treatment should be offered to women with post dural puncture • headache

  - Blood patch is the gold standardSphenopalatine ganglion block promising for:
    - · Milder headache / spinal associated headache
    - · Helping patient wait 24h for blood patch
    - Patients who refuse blood patch
  - Bed rest, caffeine, and hydration are *not* evidence based or recommended substitutes

Stanford University

#### Summary

- If you have a wet tap with an epidural needle:
- · Counsel the patient and follow carefully postpartum 50-80% will develop headache, usually in 24-48 hours · Introduce the concept of blood patch so it sounds less crazy
- Consider flushing 10mL sterile saline intrathecally
- · Possible small benefit to intrathecal catheter · Use your judgement given the patient and your institution
- No great evidence for prophylactic blood patch
  Consider one dose of cosyntropin after delivery, especially if blood patch may prove very difficult

Stanford University



### The Diagnosis and Management of Peripartum Neurologic Complications

Sol Shnider Obstetric Anesthesia Conference March 17, 2019

> Mark Rollins, MD, PhD Professor & Director Obstetric Anesthesia University of Utah Department of Anesthesiology

**No Disclosures** 

### **Objectives**

### REVIEW

- 1) Incidence and Diagnosis of Neurologic Injury
- 2) Risk Factors and Prevention
- 3) Management of the Neurologic Deficit

### **Obstetric Neurologic Injuries**

#### Anesthesia:

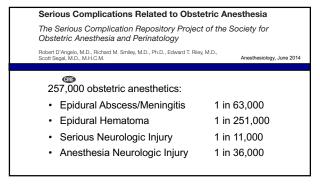
- Needle/catheter trauma
- Intraneural injection
- Ischemic / neurotoxic
- Bleeding / hematoma
- Infection

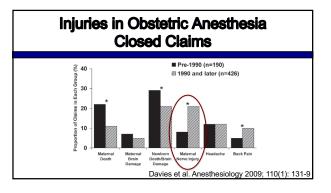
### Childbirth:

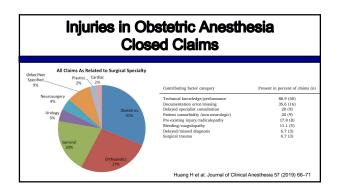
- Fetal descent
- Positioning
- Operative delivery
- Cesarean section
- Ischemic injury

Incidence of Epidural Hematoma, Infection, and Neurologic Injury in Obstetric Patients with Epidural Analgesia/Amesthesia Wilhim Rupen, M.D.: Sheen Dur, M.A., Heny McQuay, D.M., 1R. Andrew Moore, D.S.;

Anesthesiology August 2006


- 1.37 million women receiving labor epidurals:
- Deep epidural infections 1 in 145,000
  Epidural Hematoma 1 in 168,000
  Persistent Neurologic Injury 1 in 240,000
- Transient Neurologic Injury 1 in 6,700


Serious Complications Related to Obstetric Anesthesia The Serious Complication Repository Project of the Society for


Obstetric Anesthesia and Perinatology

Robert D'Angelo, M.D., Richard M. Smiley, M.D., Ph.D., Edward T. Riley, M.D., Scott Segal, M.D., M.H.C.M. Anesthesiology, June 2014

| Serious Complication              | Totals | Incidence | 95% CI                | Anesthesia<br>Related | Incidence | 95% CI                 |
|-----------------------------------|--------|-----------|-----------------------|-----------------------|-----------|------------------------|
| Maternal death                    | 30     | 1:10,250  | 1:7,180, 1:15,192     | 0                     |           |                        |
| Cardiac arrest                    | 43†    | 1:7,151   | 1:5,319, 1:9,615      | 2                     | 1:128,398 | 1:35,544, 1:1,060,218  |
| Myocardial infarction             | 2      | 1:153,748 | 1:42,562, 1:1,269,541 | 2                     | 1:128,398 | 1:35,544, 1:1,060,218  |
| Epidural abscess/meningitis       | 4      |           |                       | 4                     | 1:62,866  | 1:25,074, 1:235,620    |
| Epidural hematoma                 | 1      |           |                       | 1                     | 1:251,463 | 1:46,090, 1:10,142,861 |
| Serious neurologic injury         | 27     | 1:11,389  | 1:7,828, 1:17,281     | 7                     | 1:35,923  | 1:17,805, 1:91,244     |
| Aspiration                        | 0      |           |                       | 0                     |           |                        |
| Failed intubation                 | 10     |           |                       | 10                    | 1:533     | 1:290, 1:971           |
| High neuraxial block              | 58     |           |                       | 58‡                   | 1:4,336   | 1:3,356, 1:5,587       |
| Anaphylaxis                       | 5§     | 1:61,499  | 1:26,353, 1:189,403   | 0                     |           |                        |
| Respiratory arrest in labor suite | 25     | 1:8,455   | 1:5,714, 1:12,500     | 16                    | 1:10,042  | 1:6,172, 1:16,131      |
| Unrecognized spinal catheter      | 14     |           |                       | 14                    | 1:15,435  | 1:9,176, 1:25,634      |
| Total                             | 1571   | 1:1.959   | 1:1.675. 1:2.294      | 85#                   | 1:3.021   | 1:2.443. 1:3.782       |









### Transient Neurologic Symptoms

#### Signs & Symptoms

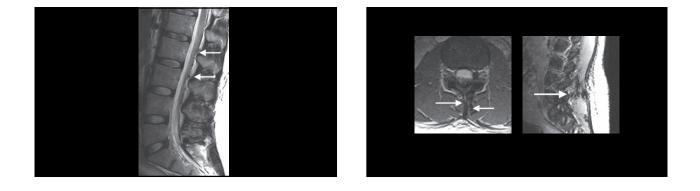
- Pain of buttocks & thighs with possible radiation to the lower extremities.
- May start a few hours after a spinal anesthetic and may last as long as 10 days.
- Exclusively a pain syndrome: no associated weakness or loss of bowel or bladder function.
- Typically will resolve within 10 days

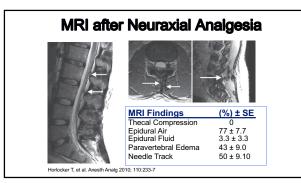


### Epidural Abscess Rate (0.6-2.6/100,000)<sup>1</sup>

- Signs & Symptoms
- Presents 4 to 10 days postpartum
- Backache & localized tenderness
- Most common organism Staph aureus
- Fever, headache, neck stiffness
- Suspicion
- MRI w/ gadolinium
- Antibiotics & surgical decompression
- 1) Chambers DJ, et al. 2016. Anaesthesia & Intensive Care Medicine 17(8):372




#### Epidural Hematoma Rate (1.3- 1.8/100,000)<sup>1</sup>


#### Signs & Symptoms

- · Acute back and radicular pain
- Lower limb numbness & weakness
- Urinary and bowel dysfunction

#### Suspicion

- Immediate MRI & Neuro consult
- Minimize time to decompression
- 1) Chambers DJ, et al. 2016. Anaesthesia & Intensive Care Medicine 17(8):372





### Obstetric Anesthesia Neurologic Injuries

#### **Direct Trauma and Injury**

Single root neuropathy (0.75-3.7 / 10,000) <sup>1,2</sup> Radicular injuries often w/ pain or paresthesias <sup>3</sup> Damage to conus medullaris from spinal/CSE <sup>4</sup> Neurotoxicity from wrong drug or high concentration

> 1) Scott DB, et al. BJA 1990; 64:537-41 2) Scott DB, et al. IJOA 1995; 4:133-9 3) Auroy Y, et al. Anesthesiology 1197; 87:479-86 4)Reynolds F, et al. Anaesthesia 2001; 56:238-47

### **Obstetric Anesthesia Neurologic Injuries**

#### Prevention

- Thorough Pre-procedure H&P
- Stop needle advancement if pain
- · Inject or place catheter only if pain resolved
- If pain persists or reoccurs with injection then resite
- Use of low lumbar puncture site
- Double check drug and dosage
- Aseptic technique wash hands, wear hat & mask Wong CA. Reg Anesth Pain Med 2004; 29:341-51

### Neurologic Injuries Intrinsic to Childbirth

Reported incidence ranges between 1 to 92 in 10,000 (approaching 1%)

Symptoms improve or resolve in vast majority

Median duration 6 – 8 weeks

Wong CA. Best Practice & Research Clinical OB & Gyn 2010; 24:367-81

## Neurologic Injuries Intrinsic to Childbirth

Reported incidence ranges between 1 to 92 in 10,000 (approaching 1%)

Symptoms improve or resolve in vast majority

Median duration 6 - 8 weeks

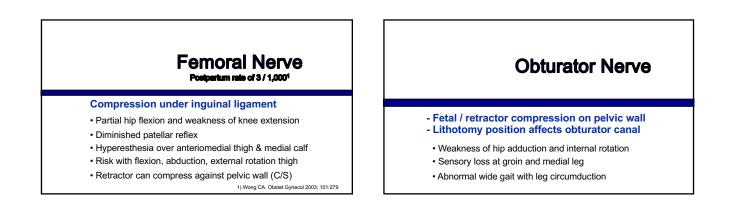
Wong CA. Best Practice & Research Clinical OB & Gyn 2010; 24:367-81

### Childbirth Risk Factors for Neurologic Injury

- Prolonged Second Stage of Labor
- Nulliparous
- ? Degree of Neuraxial Labor Analgesia
- ? Positioning / Time in Lithotomy Position
- ? Operative delivery
- ? Malpresentation

Wong CA. Reg Anesth Pain Med 2004; 29:341-51 Haller G. et al. Acta Anaesthesiologica Scandinavica 2017; 61:1203–14

| Intrinsic Nerve Injury   |                      |                                                         |                                                           |  |  |  |
|--------------------------|----------------------|---------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| Nerve                    | Roots                | Sensory Deficit                                         | Motor Deficit                                             |  |  |  |
| Lateral Fem<br>Cutaneous | L2-L3                | Anterolateral Thigh                                     | None                                                      |  |  |  |
| Femoral                  | L2-L4<br>(posterior) | Anteromedial Thigh<br>Medial Calf & Medial Foot         | Hip Flexion & Knee Extension<br>Patellar Reflex           |  |  |  |
| Obturator                | L2-L4<br>(anterior)  | Medial Thigh<br>Medial Knee                             | Hip Adduction                                             |  |  |  |
| Lumbosacral<br>Plexus*   | L1-S4                | Lateral Leg<br>Dorsum Foot                              | Foot Dorsiflexion & Eversion<br>Hip Extension & Abduction |  |  |  |
| Sciatic                  | L4-S3                | Buttocks & Posterior Thigh<br>Lateral Leg & Dorsum Foot | Knee Flexion                                              |  |  |  |
| Peroneal                 | L4-S2                | Anteriolateral Leg<br>Dorsum Foot & Toes                | Foot Dorsiflexion & Eversion                              |  |  |  |
| Posterior<br>Tibial      | L4-S3                | Sole of Foot                                            | Foot Plantar Flexion & Inversion                          |  |  |  |


### Lateral Femoral Cutaneous

Postpartum rate of 4 / 10001

#### Compression under the inguinal ligament

- Sensory deficit along anterolateral aspect of thigh
- Risk with prolonged hip flexion or pressure at waist
- Purely sensory nerve

1) Wong CA. Obstet Gynecol 2003; 101:279



### Lumbosacral Plexus Injury

### Compression on pelvic wall by fetal

#### head, forceps, or retractors during C/S

- 75% unilateral & 25% bilateral
- Can affect quadriceps, hip adduction, hip flexion
- Foot drop and inversion
- Can resemble pure root or peripheral nerve lesion
- Often multiple root levels
- Risk with large fetus, malpresentation, small pelvis

# - (L4/S2) Peroneel

- (L4/83) Tiblal

# Stretch injury with lithotomy and improper leg extension & external hip rotation

- Also misplaced gluteal injections
- Sensory loss lower 2/3 lateral leg
- Sensory loss dorsum of foot
- Weak knee flexion and possible foot drop

### **Peroneal Nerve**

#### External compression at fibular head

- Weak foot dorsiflexion and eversion
- Sensory loss lower 2/3 lateral leg
- Sensory loss dorsum of foot and toes
- Stirrups, poles, side rails, hand over lateral knee

### **Foot Drop Differential**

| Differential                                                                                     | L5 Root                  | Lumbar Plexus                    | Sciatic                        | Peroneal                       |  |
|--------------------------------------------------------------------------------------------------|--------------------------|----------------------------------|--------------------------------|--------------------------------|--|
| Ankle Inversion                                                                                  | Weak                     | Weak                             | Normal / Weak                  | Normal                         |  |
| Ankle Jerk                                                                                       | Normal (except S1)       | Normal (except S1)               | Normal / Weak                  | Normal                         |  |
| Plantar Flexion                                                                                  | Normal                   | Normal                           | Normal / Weak                  | Normal                         |  |
| Toe Flexion                                                                                      | Weak                     | Weak                             | Normal / Weak                  | Normal                         |  |
| Sensory Loss                                                                                     | L5<br>Dermatome          | Poor Demarked<br>(often Big Toe) | Dorsum Foot<br>Lateral 2/3 Leg | Dorsum Foot<br>Lateral 2/3 Leg |  |
| Pain                                                                                             | Pain Common<br>Radicular |                                  | Can be severe                  | Rare                           |  |
| Tsen LC. Int Anesthesiol Clin. 2002;40(4):67-88.<br>Wong CA. Reg Anesth Pain Med 2004; 29:341-51 |                          |                                  |                                |                                |  |

### Assessment following Neurologic Injury

- H & P including details of labor & delivery
- Assessment neurologic deficits and pain / back pain
- · Onset, progression and dermatomal vs. peripheral
- · Sensory and motor tone of paraspinous muscles
- Deep palpation of spinous process
- Consider neurologist consultation (EMG and NCS?)
- Consider physical therapist referral

### **Medicolegal Implications**

- · Nerve injury was leading cause of claims
- Effective communication between providers, patients & families helps prevent lawsuits
- Most pregnant women want to know possible complications of neuraxial anesthesia (even rare)
- · Consider separate consent for neuraxial labor analgesia

# **Summary**

- Serious & permanent neurologic complications are rare
- Intrinsic childbirth injuries may be near 1%
- Prompt recognition, diagnosis & treatment are needed to prevent serious injury
- Effective communication with patients and other providers is essential

